

SOUTHERN HIGHLANDS REGIONAL SHOOTING COMPLEX (SHRSC)

QUARTER 1 MONITORING REPORT

(FOR SAMPLING 18 NOV 2022)

Prepared for

Office of Sport Level 3, 6B Figtree Drive Sydney Olympic Park NSW 2127 T: 8754 7943

By

ErSed Environmental Pty Ltd

PO Box 1124 Leichhardt NSW 2040 M: 0424 203 046

E: carl.vincent@ersed.com.au

Disclaimer

The information contained herein has been collated and prepared for the stated project or use. This information may not be applicable to other projects or for other uses and should not be used for any other purpose.

Authorship

This report has been prepared by Carl Vincent.

Qualifications and training:

MBA (Exec) Australian Graduate School of Management 2009, B.Sc. (Resource and Environmental Management), Australian National University, 1992; Certificate in Water Quality Assessment (Field Officers), University of Western Sydney, 1999; Training Certificate in Coastal Management, Southern Cross University School of Coastal Management, 2000; Environmental Systems Auditor and Lead Auditor, NCSI 2008; Certified Professional in Erosion and Sediment Control.

Document Revisions

Reference	Date	Prepared	Issued
22029 SHRSC 22-23 QTR1-2 0-240811	11 AUG 2024	C Vincent	SUBMISSION

Contents

Par	t A: Bac	kground to Monitoring Event and SAQP	11
1	Intr	oduction	11
1.1	Bacl	ground to Document	11
1.2	Stru	cture of Document	11
2	Bac	kground information	12
2.1	Site	Location	12
2.2		ent Zoning	
2.3		ounding Land Use and Sensitive Receptors	
2.4		Setting	
	2.4.1	Geology	
	2.4.2	Soils	
	2.4.3	Topography	
	2.4.4	Hydrology	
	2.4.5	Groundwater	
	2.4.6	Surrounding Groundwater Use	16
3	SHR	SC Description	17
3.1	Wat	er Quality Structures	17
3.2		e Treatment and Drainage	
3.3	Stop	butts and Bullet Catchers	19
4	Qua	lity Assurance and Data Control	20
4.1	Data	a Quality Objectives (DQO) Process	20
5	Con	ceptual Site Models (CSM)	23
5.1	800	m Range: Conceptual Site Model (CSM)	23
	5.1.1	Existing infrastructure and layout	23
	Formal	and informal drainage system	24
	5.1.2	Sources of contamination and potential contaminants of concern	24
	5.1.3	Identified contaminant migration pathways	25
	5.1.4	Identified exposure routes	25
	5.1.5	Identified Receptors	26
5.2	50m	: Conceptual Site Model (CSM)	27
	5.2.1	Existing infrastructure and layout	27
	Formal	and informal drainage system	28
	5.2.2	Sources of contamination and potential contaminants of concern	28
	5.2.3	Identified contaminant migration pathways	29
	5.2.4	Identified exposure routes	29
	5.2.5	Identified Receptors	30
5.3	500	m Range: Conceptual Site Model (CSM)	31

	5.3.1	Existing infrastructure and layout	31
	Formal	and informal drainage system	31
	5.3.2	Sources of contamination and potential contaminants of concern	32
	5.3.3	Identified contaminant migration pathways	33
	5.3.4	Identified Receptors	33
6	Sam	ppling Analysis and Quality Plans	34
6.1		P for the 800m Range	
6.2	SAC	P for the 50m and 500m Range	37
6.3	Visu	al Inspections	40
	6.3.1	Water quality structures and surrounds	40
	6.3.2	Engineering controls – earthworks	40
	6.3.3	Engineering controls – lime treatment process	40
	6.3.4	Safety and signage	40
	6.3.5	Shot loss	40
	6.3.6	Vegetation health	40
6.4	Met	hodology	41
	6.4.1	Soil sampling methodology	41
	6.4.2	Sediment sampling methodology	41
	6.4.3	Water sampling methodology	42
6.5	Labo	pratory QA QC	43
6.6	Labo	oratory Methods	44
7	Site	Assessment Criteria	45
7.1	Rati	onale for Selection of Assessment Criteria	45
	7.1.1	Derivation of Ecological Investigation Levels (EILs)	46
	7.1.2	Referenced NEPM 1999 (2013) Tier 1 Health Investigation Levels (HILs)	46
Par	t B: Moi	nitoring Program Implementation and Report	47
8	Moi	nitoring Program – Implementation	47
8.1	Mor	nitoring Program – Quarter 1	49
	Summa	rry of sampling event	49
8.2	pH S	Soil, Sediments and Surface Waters	49
	8.2.1	Results – pH Soils, Sediments and Surface Waters 50m range	49
	8.2.2	Results – Soils, Sediments and Surface Water 500m range	50
	8.2.3	Results – Soils, Sediments and Surface Waters 800m range	52
8.3	Six I	Monthly Visual Inspections	53
	8.3.1	50m range	53
	8.3.2	500m range:	58
	8.3.3	Other Basins	65
	8.3.4	800m range	66
8.4	Disc	ussion of results	68

	8.4.1	(pH) Soil, Sediments and Surface Water	68
	8.4.2 areas	Results/discussion – Additional Sampling Soils, Sediments and Surface Wate 71	ers all
	8.4.3	Visual Inspections: Water Quality Basins	71
		ollowing table summarises observations and recommended actions from Section mended actions are provided in bold.	
	8.4.4	Visual Inspections: Lime treatment Process	72
	8.4.5	Visual Inspections: Road Infrastructure and Drainage	72
	8.4.6	Visual Inspections: Signage	72
	8.4.7	Visual Inspections: Vegetation health - Range areas	73
	8.4.8	Visual Inspections: Other Engineering Controls and Structures	73
8.5	Red	commendations	74
	8.5.1	Management Actions	74
	8.5.2	Follow up Monitoring	74
	9.4.3	Changes to Sampling Program	74
9	Ref	ferences	75
10	Αp	pendices	75
	1.1.1		ined.
1.2		kground to Document	
1.3		icture of Document	
2	Backg	round information	12
2.1	Site	Location	12
2.2	Cur	rent Zoning	13
2.3	Suri	ounding Land Use and Sensitive Receptors	14
2.4	Site	Setting	
	2.4.1	Geology	
	2.4.2	Soils	
	2.4.3	Topography	
	2.4.4	Hydrology	
	2.4.5	Groundwater	15
	2.4.6	Surrounding Groundwater Use	16
3	SHRS	Description	17
3.1		ter Quality Structures	
3.2		e Treatment and Drainage	
3.3		butts and Bullet Catchers	
4	Qualit	ty Assurance and Data Control	20

4.1	Dat	a Quality Objectives (DQO) Process	20
5	Conce	eptual Site Models (CSM)	23
5.1	800	m Range: Conceptual Site Model (CSM)	23
	5.1.1	Existing infrastructure and layout	23
	Forma	ıl and informal drainage system	24
	5.1.2	Sources of contamination and potential contaminants of concern	24
	5.1.3	Identified contaminant migration pathways	25
	5.1.4	Identified exposure routes	25
	5.1.5	Identified Receptors	26
5.2	50n	n: Conceptual Site Model (CSM)	27
	5.2.1	Existing infrastructure and layout	27
	Forma	Il and informal drainage system	28
	5.2.2	Sources of contamination and potential contaminants of concern	28
	5.2.3	Identified contaminant migration pathways	29
	5.2.4	Identified exposure routes	29
	5.2.5	Identified Receptors	30
5.3	500	m Range: Conceptual Site Model (CSM)	31
	5.3.1	Existing infrastructure and layout	31
	Forma	ıl and informal drainage system	31
	5.3.2	Sources of contamination and potential contaminants of concern	32
	5.3.3	Identified contaminant migration pathways	33
	5.3.4	Identified Receptors	33
6	Samp	ling Analysis and Quality Plans	34
6.1		QP for the 800m Range	
6.2	SAC	QP for the 50m and 500m Range	37
6.3	Visu	ual Inspections	40
	6.3.1	Water quality structures and surrounds	40
	6.3.2	Engineering controls – earthworks	40
	6.3.3	Engineering controls – lime treatment process	40
	6.3.4	Safety and signage	40
	6.3.5	Shot loss	40
	6.3.6	Vegetation health	40
6.4	Me	thodology	41
	6.4.1	Soil sampling methodology	41
	6.4.2	Sediment sampling methodology	41
	6.4.3	Water sampling methodology	42
6.5	Lab	oratory QA QC	43
6.6	Lab	oratory Methods	44
7	Site A	ssessment Criteria	45

7.1	Rat	ionale for Selection of Assessment Criteria	45
	7.1.1	Derivation of Ecological Investigation Levels (EILs)	46
	7.1.2	Referenced NEPM 1999 (2013) Tier 1 Health Investigation Levels (HILs)	46
Par	t B: Mo	onitoring Program Implementation and Report	47
8	Moni	toring Program – Implementation	47
8.1	Мо	nitoring Program – Quarter 1	49
	Summ	ary of sampling event	49
8.2	рН	Soil, Sediments and Surface Waters	49
	8.2.1	Results – pH Soils, Sediments and Surface Waters 50m range	49
	8.2.2	Results – Soils, Sediments and Surface Water 500m range	50
	8.2.3	Results – Soils, Sediments and Surface Waters 800m range	52
8.3	Six	Monthly Visual Inspections	53
	8.3.1	50m range	53
	8.3.2	500m range:	58
	8.3.3	Other Basins	65
	8.3.4	800m range	66
8.4	Disc	cussion of results	68
	8.4.1	(pH) Soil, Sediments and Surface Water	68
	8.4.2 areas	Results/discussion – Additional Sampling Soils, Sediments and Surface W 71	/aters al
	8.4.3	Visual Inspections: Water Quality Basins	71
	8.4.4	Visual Inspections: Lime treatment Process	72
	8.4.5	Visual Inspections: Road Infrastructure and Drainage	72
	8.4.6	Visual Inspections: Signage	72
	8.4.7	Visual Inspections: Vegetation health - Range areas	73
	8.4.8	Visual Inspections: Other Engineering Controls and Structures	73
8.5	Rec	ommendations	74
	8.5.1	Management Actions	74
	8.5.2	Follow up Monitoring	74
	9.4.3	Changes to Sampling Program	74
9	Refer	ences	75
10	Appe	ndices	75
Par	t A: Ba	ckground to Monitoring Event and SAQP	11
	1.1.1	Introduction Error! Bookmark not	defined.
1.2	Вас	kground to Document	11
1.3	Stru	icture of Document	11
2	Backg	round information	12
2.1	Site	Location	12

2.2	Cur	rent Zoning	13
2.3	Suri	ounding Land Use and Sensitive Receptors	14
2.4	Site	Setting	14
	2.4.1	Geology	14
	2.4.2	Soils	14
	2.4.3	Topography	15
	2.4.4	Hydrology	15
	2.4.5	Groundwater	15
	2.4.6	Surrounding Groundwater Use	16
3	SHRSO	Description	. 17
3.1	Wat	er Quality Structures	17
3.2	Lim	e Treatment and Drainage	18
3.3	Stop	butts and Bullet Catchers	19
4	Qualit	y Assurance and Data Control	. 20
4.1	Data	a Quality Objectives (DQO) Process	20
5	Conce	ptual Site Models (CSM)	. 23
5.1	800	m Range: Conceptual Site Model (CSM)	23
	5.1.1	Existing infrastructure and layout	23
	5.1.2	Sources of contamination and potential contaminants of concern	24
	5.1.3	Identified contaminant migration pathways	25
	5.1.4	Identified exposure routes	25
	5.1.5	Identified Receptors	26
5.2	50m	n: Conceptual Site Model (CSM)	27
	5.2.1	Existing infrastructure and layout	27
	Forma	l and informal drainage system	28
	5.2.2	Sources of contamination and potential contaminants of concern	28
	5.2.3	Identified contaminant migration pathways	29
	5.2.4	Identified exposure routes	29
	5.2.5	Identified Receptors	30
5.3	500	m Range: Conceptual Site Model (CSM)	31
	5.3.1	Existing infrastructure and layout	31
	Forma	l and informal drainage system	31
	5.3.2	Sources of contamination and potential contaminants of concern	32
	5.3.3	Identified contaminant migration pathways	33
	5.3.4	Identified Receptors	33
6	Samp	ling Analysis and Quality Plans	. 34
6.1	SAC	P for the 800m Range	34
6.2	SAC	P for the 50m and 500m Range	37
6.3	Visu	al Inspections	40

	6.3.1	Water quality structures and surrounds	. 40
	6.3.2	Engineering controls – earthworks	. 40
	6.3.3	Engineering controls – lime treatment process	. 40
	6.3.4	Safety and signage	. 40
	6.3.5	Shot loss	. 40
	6.3.6	Vegetation health	. 40
6.4	Met	hodology	. 41
	6.4.1	Soil sampling methodology	. 41
	6.4.2	Sediment sampling methodology	. 41
	6.4.3	Water sampling methodology	. 42
6.5	Lab	oratory QA QC	. 43
6.6	Lab	oratory Methods	. 44
7	Site A	ssessment Criteria	. 45
7.1	Rati	onale for Selection of Assessment Criteria	. 45
	7.1.1	Derivation of Ecological Investigation Levels (EILs)	. 46
	7.1.2	Referenced NEPM 1999 (2013) Tier 1 Health Investigation Levels (HILs)	. 46
Par	t B: Mo	nitoring Program Implementation and Report	. 47
8	Monit	oring Program – Implementation	. 47
8.1		nitoring Program – Quarter 1	
	Summ	ary of sampling event	. 49
8.2	pH S	Soil, Sediments and Surface Waters	. 49
	8.2.1	Results – pH Soils, Sediments and Surface Waters 50m range	. 49
	8.2.2	Results – Soils, Sediments and Surface Water 500m range	. 50
	8.2.3	Results – Soils, Sediments and Surface Waters 800m range	. 52
8.3	Six I	Monthly Visual Inspections	. 53
	8.3.1	50m range	. 53
	8.3.2	500m range:	. 58
	8.3.3	Other Basins	. 65
	8.3.4	800m range	. 66
8.4	Disc	cussion of results	. 68
	8.4.1	(pH) Soil, Sediments and Surface Water	. 68
	8.4.2 areas	Results/discussion – Additional Sampling Soils, Sediments and Surface Waters 71	al
	8.4.3	Visual Inspections: Water Quality Basins	. 71
	8.4.4	Visual Inspections: Lime treatment Process	. 72
	8.4.5	Visual Inspections: Road Infrastructure and Drainage	. 72
	8.4.6	Visual Inspections: Signage	. 72
	8.4.7	Visual Inspections: Vegetation health - Range areas	. 73
	8.4.8	Visual Inspections: Other Engineering Controls and Structures	. 73

8.5	Rec	ommendations	. 74
	8.5.1	Management Actions	. 74
	8.5.2	Follow up Monitoring	. 74
	9.4.3	Changes to Sampling Program	. 74
9	Refere	ences	75
10	Apper	ndices	75

List of figures

- 1. Site Location
- 2. SHRSC Zoning Plan showing SP1 Special Activities and E2 Environmental Conservation
- 3. Site Layout of the SHRSC
- 4. Lime Treatment and Drainage Details
- 5. Bullet Catcher and Stop Butt Detail
- 6. 800m Range: Conceptual Site Model (CSM)
- 7. 50m Range: Conceptual Site Model (CSM)
- 8. 50m Range Layout
- 9. 500m Range: Conceptual Site Model (CSM)
- 10. 500m Range Layout

List of tables

SAQP

- 1. SHRSC Information and Land Use
- 2. Sampling Rationale Matrix (800m Range)
- 3. (A, B & C) Sample plan 800m Range
- 4. Sampling Rationale Matrix (50m & 500m Ranges)
- 5. (A, B & C) Sample plan 50m & 500m Ranges
- 6. (A & B) Laboratory Methods

Monitoring report

- 7. Annual Operational Monitoring Program
- 8. Monitoring Program Schedule
- 9. Quarter 1 Sampling Event
- 10. pH Soil, Sediments and Surface Waters 50m Range
- 11. pH Soil, Sediments and Surface Waters 500m Range
- 12. pH Soil, Sediments and Surface Waters 800m Range
- 13. Visual inspections 50m Range and surrounds
- 14. Visual inspections 500m Range and surrounds
- 15. Visual inspections Other Basins
- 16. Visual inspections 800m Range and surrounds
- 17. Discussion of Results, pH
- 18. Discussion of Observations, Water Quality Basins
- 19. Discussion of Observations Road Infrastructure
- 20. Discussion of Observations , Vegetation Health
- 21. Discussion of Observations, Other Engineering Controls and Structures

Appendix 1: Quarter 1 Laboratory results

TABLE 22	SOIL AND SEDIMENT RESULTS – ALL RANGES
TABLE 23	SURFACE WATERS (50M, 500M & 800M)

Part A: Background to Monitoring Event and SAQP

1 Introduction

1.1 Background to Document

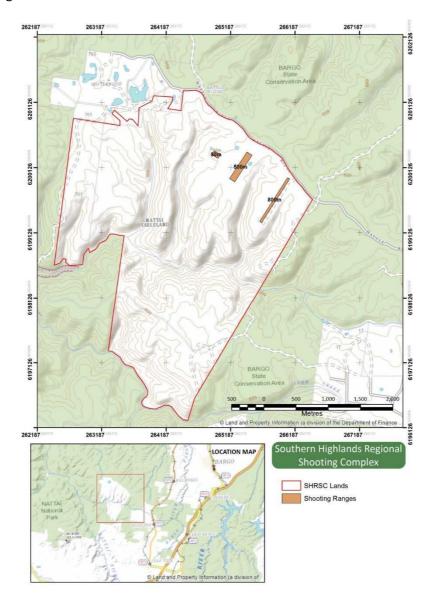
This report forms part of the annual monitoring program for the Southern Highlands Regional Shooting Complex (SHRSC) and support the performance of the Operational Monitoring Program as detailed within Section 5 of the SHRSC Water Cycle Management Plan.

The monitoring undertaken may also be modified on site depending on site observations or in response to recommendations made as part of previous sampling exercises.

1.2 Structure of Document

This Report has been written in general accordance with the Guidelines for Consultants reporting on Contaminated Sites (OEH 2011) and National Environment Protection (Assessment of Site Contamination) Measure (NEPM) 1999 (Amended 2013) specifically Section 4, Section 7 and Schedule B5a Guideline on Ecological Risk Assessment.

This document is presented in two parts;


Part A – Background to Monitoring Event and SAQP

Part B – Monitoring Program Implementation and Report

2 Background information

2.1 Site Location

The Southern Highlands Regional Shooting Complex (SHRSC) is located in the Wingecarribee LGA on Wattle Ridge Road, approximately 5.5 km northwest of the centre of the village of Hill Top in the southern highlands of New South Wales. The catchment for the site is between the upper reaches of the Nepean River and other rivers such as the Wollondilly, Nattai, Bargo and Wingecarribee. These rivers flow into the Nepean River further to the north. See Figure 1 – Site Location.

FIGURE 1: Site Location

1,036 hectares (ha) of land has been excised from the Bargo State Conservation Area by means of the National Parks and Wildlife (Adjustment of Areas) Act 2006. The SHRSC occupies an area of approximately 16 ha within this land. The remainder of the land on the site (approximately 1,000 ha) has been retained in its existing condition as a vegetation buffer zone. This area acts as a safety zone for the SHRSC.

2.2 Current Zoning

Figure 2 presents the current zoning of the SHRSC as SP1: Special Activities — Shooting Range referenced from the NSW Department of Planning SEPP 2005. For the purposes of this contamination assessment the area within the range will therefore be considered 'recreational and open space'.

The SP1 areas are bounded by a large parcel of land zoned E2: environmental conservation. This E2 land includes the receiving catchments of the shooting ranges from the Wattle Ridge Range to the nearest water course of Rocky Waterholes Creek. For the purposes of this SAQP the area outside the range is considered 'recreational and open space.

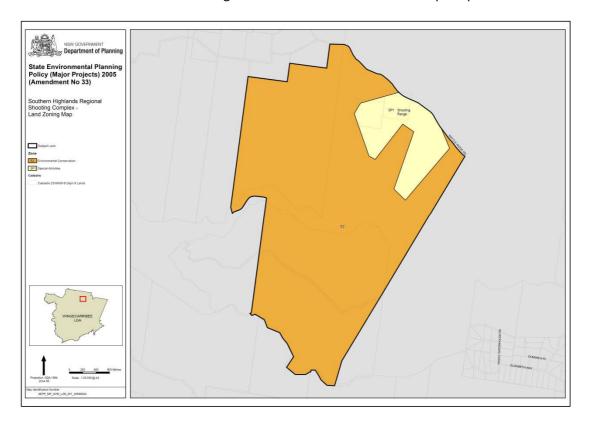


FIGURE 2: SHRSC Zoning Plan showing SP1 Special Activities and E2 Environmental Conservation

Table 1 below summarises the information relevant to the site.

TABLE 1: SHRSC Information and Land Use

TABLE 1: STREE INFORMATION and Land OSC		
Site information		
Owner	Office of Sport	
Operator	Office of Sport	
Address	Wattle Ridge Rd	
Lot and DP	100 DP1088254	
County /Parish	Camden County, Cumbertine Parish	
Local Government Area	WINGECARRIBEE	
Zoning	SP1 Special Activities	
Land Use (current)	Shooting range or proposed shooting range	
Land Use (proposed)	Shooting range	
Applicable LEP	Wingecarribee Local Environmental Plan 1989	

2.3 Surrounding Land Use and Sensitive Receptors

The site is bounded by:

- Wattle Ridge a grazing property/residence which adjoins the site to the northwest (located approximately 2.5 km north of the existing range);
- Bargo State Conservation Area to the southwest;
- A 330 kV cleared electricity easement (Transgrid) to the southeast; and
- Wattle Ridge Road to the northeast.

Bargo State Conservation Area is located further southwest, southeast and northeast. Nattai National Park is located further to the northwest, on the opposite site of the Wattle Ridge property. Nattai National Park is accessible from the end of Wattle Ridge Road approximately 3 km away.

Sensitive receptors include Rocky Waterholes Creek, located approximately 1.5 km south of the site. The creek is a tributary of the Nattai River. The Nattai River is located approximately 7.5 km west of the site.

2.4 Site Setting

The information in the sections below with respect to the physical setting at the site and the surrounding environment has been referenced from:

NSW Sport and Recreation Southern Highlands Regional Shooting Complex Environmental Assessment (Volume 1) **GHD** February 2008

2.4.1 Geology

The underlying geology of the site comprises the Hawkesbury Sandstone of the Mittagong Formation (Herbert and Helby: 1980: pp256). The site lies within an outcrop of the Narrabeen group, which comprises sandstone, claystone and siltstone. The Hawkesbury sandstone overlies a Triassic shale unit – the Wianamatta Group. Geologically, the site is transitional between the Cumberland Plain of the Sydney Basin and the southern uplands.

2.4.2 Soils

The three main groups of soils that occur within the regional environment are:

- Sandstone tableland soils;
- Valley soils (sandstone derived); and
- Soils associated with nutrient rich shales and igneous rocks.

Land surfaces on the site do not appear to have been significantly reworked cut or in-filled. Some grading has been undertaken at the ranges to construct the fairways and the Stopbutts. Deeper excavations and possible import of materials has occurred as part of the construction of the retention basins.

These soil landscape types are unstable when disturbed. They are highly susceptible to mass movement, such as slides and rock falls, as well as wind and water erosion (Hazelton and Tille: 1990).

2.4.3 Topography

The (SHRSC) is characterised by relatively flat topography and is situated on spur lines that trends to the north from the Wattle Ridge Range. The spur-line occupies a position between tributaries of the Rocky Waterholes Creek. All watercourses are upper tributaries of the Nattai River. Topographically the site is transitional between the Cumberland Plain of the Sydney Basin and the southern uplands.

2.4.4 Hydrology

Review of climate data for the region indicates that there is some variability in the rainfall with the maximum mean monthly rainfall of 93.8 mm in March, while the minimum mean monthly rainfall recorded is about 43.7 mm in September. The average annual rainfall is approximately 848 mm.

Rocky Waterholes Creek, which is immediately south of the proposal location, drains directly to the Nattai River approximately 6 km to the west of the existing Hill Top Rifle Range. The Nattai River drains north to Lake Burragorang.

The Hawkesbury Nepean Catchment Management Authority has classified 98% of the Nattai River as being 'Near Intact'.

The catchment of Rocky Waterholes Creek is approximately 23.5 km², whilst the catchment of the Nattai River upstream of the junction with Rocky Waterholes Creek is approximately 240 km². The total catchment area of the Nattai River upstream of Lake Burragorang is approximately 480 km².

Given the site location and the surrounding physical environment, the site is to be designed to the regulate / retain run off, of the surface water and sediment from the stop butt and the range areas using site drainage measures that discharge to designated retention basins. The site design aims to minimise the net sediment load migrating off site under heavy rainfall conditions throughout the year.

2.4.5 Groundwater

The site is located within the Hawkesbury Sandstone – southeast groundwater flow system, which consists of layered aquifer system with yields ranging from less than one to 50 litres per second.

Basalt caps are expected to occur in some areas of the Mittagong Ranges, with groundwater from this horizon discharging into seeps, springs and rivers (Sydney Catchment Authority: 2006).

According to the Department of Natural Resources Groundwater Licence database, groundwater within the Hill Top area was found to be present at depths of approximately 20 metres in the sandstone aquifer.

The depth to groundwater within the aquifers is expected to be dependent on rainfall and therefore is likely to vary seasonally. However, groundwater is expected at depths greater

than 15 metres below ground level. Drilling undertaken on 12 and 13 July 2007 at the (SHRSC) location indicated no obvious groundwater table present within 50 metres below ground level. Based on the reported depth to groundwater on the site being greater than 50m below ground level, potential for surficial contaminants to impact ground water existing beneath the operational ranges is therefore considered to be of low likelihood. Groundwater assessment was therefore not considered to be necessary as part of this site assessment.

2.4.6 Surrounding Groundwater Use

The Bureau of Meteorology Australian Ground Water Explorer (http://www.bom.gov.au/water/groundwater/explorer/map.shtml) and the DPI Office of Water ground water data base was sued to search for bores within 800m of the site.

A number of monitoring bores were reported to be located within 2-5km of the site with no water quality data available. Two stock domestic bores were reported to be located within 5km.

• GW114443

A 120m stock/domestic bore located in the Hilltop Village approximately 3.2km to the south east of the site.

GW065725

A 122m stock/domestic bore located around Wattleridge approximately 5k to the north of the site

Based on the results of the bore search and the reported local water quality the NEPM 1999 (amended 2013) ground water investigations levels (GILs) suitable for the protection of fresh water species should therefore be adopted as the assessment criteria for this SAQP.

3 SHRSC Description

The SHRSC is a regional recreational shooting complex incorporating the existing 800 metre Hill Top Rifle Range (HTRR) and separate newly constructed facilities located approximately 700m to the North West. The HTRR has been used since the 1980s by a local club for long rifles and pistol use.

It includes:

- An 800m range consisting of a of a single target area and stop butt with multiple firing points on raised mounds located at 100m intervals. In 2018-19 the 800m range was subject to major civil works to improve and rehabilitate the stop butt and surrounds.
- Club house and out buildings
- Informal parking

The newly constructed facilities include:

- A (500 metres by 100 metres) shooting range consisting of a single firing point and multiple target points set in front of intermediate mounds. A final large stop butt is provided at the end of the range;
- A (50 metres by 115 metres) shooting range consisting of 6 separated galleries each single firing point and large stop butt;
- Supporting facilities and infrastructure, including:
 - Range control and Toilet facilities;
 - Access roads (designed for two-wheel drive vehicle access) connecting to Wattle Ridge Road and between the ranges;
 - o Diesel generator, solar panels, water supply tanks and septic system;
 - o Informal parking for 160 cars; and
 - o Basins to contain water for water quality control purposes.
- Future facilities include:
 - A (200 metres by 85 metres) shooting range;
 - A shotgun range;
 - o An indoor air range (21 metres by 17 metres by 6.5 metres); and
 - A Clubhouse

Environmental controls are included in the design for the ranges at the SHRSC. These specific environmental controls are discussed following.

3.1 Water Quality Structures

A single pond or informal retention structure is located to the east of the 800m range primarily taking water from the access road adjacent to the range.

Four water quality structures/ retention basins have been constructed as part of the development of the 50m, 200m (yet to be built) and 500m ranges. A fifth Structure is proposed as part of a future shot gun range.

Additionally, works have been undertaken to modify an existing pond/structure located near the gate to the new ranges from Wattle Ridge Road. All structures above will be

referred to in this Plan as "basins" including the informal ponds.

Figure 3 shows the layout at the SHRSC. Range and basin numbers are also indicated.

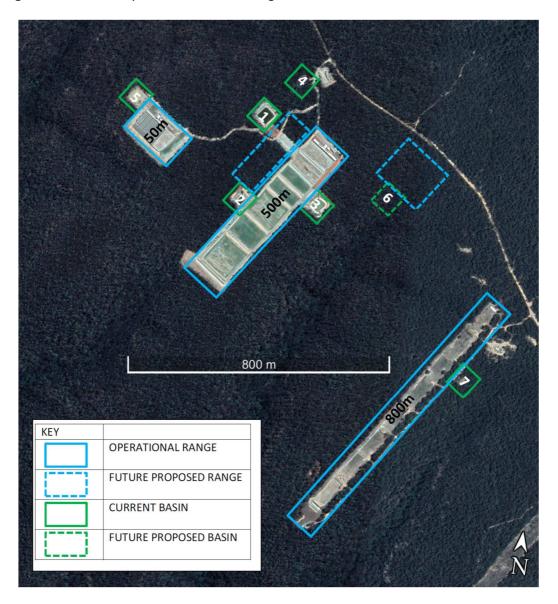
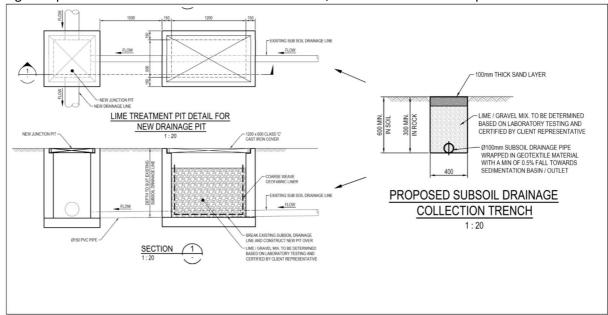


FIGURE 3: Site Layout of the SHRSC

3.2 Lime Treatment and Drainage

As part of the rehabilitation works to the 800m range and construction of the 500m and 50m ranges improved drainage measures were included. This drainage consists of a network of sub soil drainage trenches set down gradient of primary impact areas leading to lime treatment pits to raise pH and reduce the transport of heavy metals from the range areas. Stormwater lines from these treatment pits either lead to formal outlet measures or to new basins.

The 800m range has an additional pit to retain water/sediment for testing purposes as is the case for the basins at the 50 and 500 ranges. Lime pits and directional pits do not retain water.



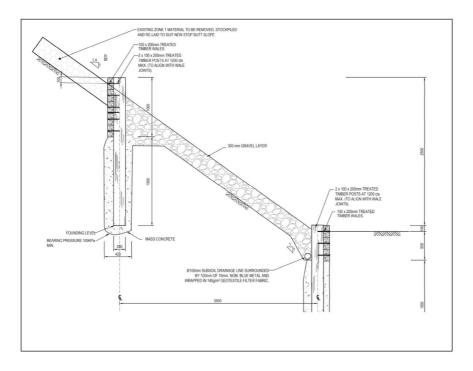

Figure 4 provides schematic of the collection trenches, and the lime treatment pits

FIGURE 4: Lime treatment and Drainage Details.

3.3 Stopbutts and Bullet Catchers

As part of the rehabilitation works to the 800m range and construction of the 500m and 50m ranges specialised bullet catchers were included in the construction of the final stop butts for all the ranges. These bullet catchers consist of 300mm gravel layer enclosed in treated pine timber boxing and are designed to reduce potential for bullet skip or ricochet. The gravel also acts to allow free drainage to collection trenches and the lime treatment process reducing potential for leaching of contaminants to the sub surface.

Figure 5 provides an indicative bullet catcher and stop butt detail.

FIGURE 5: Bullet Catcher and Stop Butt Detail.

4 Quality Assurance and Data Control

4.1 Data Quality Objectives (DQO) Process

The DQO process is a seven (7) process applied to optimise the design of the sampling and analysis and to ensure that all objectives of the investigation are met.

DQOs have been developed to detail the type of data that is needed to meet the overall objectives of this project. The DQOs presented in this document have been developed consistent with the following published guidance;

- National Environment Protection Council (1999) National Environmental Protection Measure 1999 as amended 2013 – Assessment of Site Contamination. Schedule B (2) Guideline on Site Characterisation (NEPC 2013);
- NSW DECC (2007) Guidelines for the Assessment and Management of Groundwater Contamination;
- NSW DECC (2006) Guidelines for the NSW Site Auditor Scheme (2nd Edition);
- NSW EPA (1995) Sampling Design Guidelines;
- NSW EPA (2000) Guidelines for Consultants Reporting on Contaminated Sites;
- Australian/New Zealand Standard, AN/NZS 4360:2004, Risk Management Principles and guidelines; and
- Australian/New Zealand Standard, AN/NZS 5667.11:1998, Water Quality Sampling -Guidance on sampling of ground waters.

The seven (7) steps are outlined, as follows:

contamination issues?

Step 1: State the Problem – concisely describe the problem to be studied. Review prior studies and existing information to gain a sufficient understanding to define the problem;

Previous assessments, range design and current usage indicate potential contamination issues associated with the stop butt and immediate surrounds, primary and secondary shot fall areas AND drainage pathways.

Further investigation is needed to confirm the location, nature and extent of contamination (if present) and to determine what further action may be required.

Step 2: Identify the Decision – identify what questions the study will attempt to resolve, and what actions may result;

The primary question(s) that this investigation will attempt to resolve are

What are the characteristics of any contamination if present in the range and surrounds? Is further action e.g. a risk assessment or Remediation Action Plan (RAP) required to address any

Are additional works required to respond to ongoing contamination and mitigate any risk to the surrounding environment?

Step 3: Identify the Inputs to the Decision – identify the information that needs to be obtained and the measurements that need to be taken to resolve the decision statement;

The locations for sampling are presented in a Sampling Rationale Matrix for each range (see Sect 6).

The contaminants of potential concern in soil/sediment/water have been selected based on the

past and use as a shooting facility.

Contaminants of potential concern are presented in the list of Analytes within the SAQP Tables for each range (see Section 6.0)

Results will be assessed against the following guidelines

ANZECC 2000 Water Quality and Sediment Quality Guidelines and

NEPM 1999 (amended 2013) Health Investigation Levels (HILs) and Ecological Investigation Levels (EILs) for Soil.

(HILs) C. Parks, recreational open space and playing fields: includes secondary schools.

(HILs) D. Commercial/Industrial: includes premises such as shops and offices as well as factories and industrial sites.

NEPM (2013) HIL D criteria do not appear to be applicable on the site and have been referenced for information purposes only. The site is zoned SP1 Special Activities for the purposes of a shooting range under the State Environmental Planning Policy (State Significant Precincts) 2005. There are areas outside the ranges themselves within the SHRSC that are zoned E2 Environmental Conservation.

Specific investigation levels for the contaminants of potential concern are presented in Section 6 Site Assessment Criteria

Step 4: Define the Study Boundaries – specify the time periods and spatial area to which decisions will apply. Determine when and where data should be collected;

The investigation is confined to range areas including fairway, rear of stop butt and associated drainage as shown in Figure 3.

No investigation will be conducted outside of the site boundaries as the areas of concern are on top of a spur line/hill and contaminant migration has been limited vertically and horizontally by design layout and area usage.

Soil sampling will be conducted around the face of the stop butt plus from areas immediately down gradient from areas which receive bullet impacts.

Sampling will also be undertaken down gradient of the stop butt in overland/surface flow lines and within the area at the rear of the stop butt where surface water exits the site.

Samples will be collected surrounding bushland areas in close proximity to the ranges

Water and Sediments will be taken from basins within the SHRC in addition to adjacent creeks off the range but where these can be readily accessed below the outlet points of the basins.

Step 5: Develop a Decision Rule – define the statistical parameter of interest, specify the action level, and integrate the previous DQO outputs into a single statement that describes the logical basis for choosing among alternative actions;

The proposed sampling density/frequency across the subject assessment area has not been strictly prepared to comply with the NSW EPA sampling density guidelines based on the assessment area.

The sampling strategy is based on previous assessments of site condition, range design, knowledge of site use and shot fall and the condition of the surrounding environment. The strategy is therefore considered sufficient to characterize contaminant impacts at the area in general accordance with the NSW EPA Sampling Design Guidelines.

The sampling frequency as acceptable for the purposes of site audit as it is in general accordance with the NSW EPA Sampling Design Guidelines.

Additional targeted sampling may be undertaken based on site observations during the site inspection;

If the contaminants in the soil outside defined shot fall areas are identified above the adopted assessment criteria, then the soil should be considered as potentially contaminated and then either subjected to further risk assessment AND/OR remediated AND/OR managed accordingly.

If concentration of contaminants in sediments or water samples is identified above the adopted assessment criteria then the sampled areas should be considered as potentially contaminated and then managed accordingly. Augmentation of drainage from the stop butt area should be considered.

Step 6: Specify Tolerable Limits on Decision Errors – define the decision maker's tolerable decision error based on a consideration of the consequences of making an incorrect decision.

Data generated during this project must be appropriate to allow decisions to be made with confidence.

The potential decision errors must be identified, the potential consequences evaluated, and the severity of decision error consequences assessed, the null hypothesis must be defined and what level of false positive or false negative decision error will be acceptable for the site assessment must be specified.

Considering the current and ongoing use as a recreational shooting range it has been determined that the two decision errors for the contaminants of concern are:

Type I error – deciding that site soils are within the assessment criteria when they truly are not; and Type II error – deciding that site soils exceed the assessment criteria when they truly do not.

The consequences of deciding that the soils exceed the assessment criteria when they truly do not, will be further human health and/or ecological risk assessment and/or active remediation/management of site soils.

The consequences of deciding that the soils do not exceed the remediation acceptance criteria when they truly do, will be that contaminated soils will be left unmanaged on the site and may potentially endanger human health or pose ongoing risks to the environment. Additionally, the owners of the site may be liable for future damages and environmental clean-up costs.

For site soils, sediments and water and for each respective contaminant of concern, the baseline condition or null hypothesis is "the soils/sediments/water levels exceed the assessment criteria". The alternative hypothesis is "the soils/sediments/water levels are within the assessment criteria".

It is noted that the past and ongoing use of the site is such that contamination is expected and that ongoing contamination of specific areas will be unavoidable. As such management of the site as a potentially contaminated area is the default approach.

Samples will be analysed at a National Association of Testing Authorities (NATA) Accredited Laboratory and as per the laboratory's Quality Assurance targets.

Step 7: Optimise the Design – evaluate information from the previous steps and generate alternative data collection designs. Choose the most resource-effective design that meets all DQOs.

The proposed data collection design has been described in Section 6: SAQP and is expected to satisfy the DQOs.

Targeted sampling will be conducted to accurately define the lateral and vertical extent of contaminants expected at the site.

5 Conceptual Site Models (CSM)

5.1 800m Range: Conceptual Site Model (CSM)

The figure below provides a schematic CSM for the 800m range target area and surrounds. The CSM below aims to identify the following aspects relevant to the 800m range, they are:

- Areas of potential concern;
- Contaminants of potential concern;
- Potential contaminant expoure or migration pathways; and the
- Human and/or ecological receptors.

Additional elements of the CSM are discussed in the sections following.

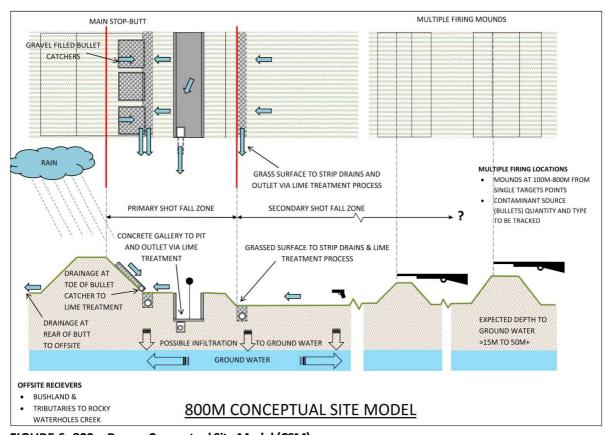


FIGURE 6: 800m Range: Conceptual Site Model (CSM)

5.1.1 Existing infrastructure and layout

Stop butt and target area

The primary potential area of concern identified at the 800m range is the target area, stop butt, bullet catcher, and surrounds.

The 800m range target area consists of target frames which are manually controlled from within a safe ~3m deep trench (or gallery). This gallery provides access to the stop butt for maintenance and is set below the line of fire.

In-front of the gallery there is a smaller mound or mantlet running the full length of the gallery and the target area. The purpose of this mantlet is to capture low projectiles and low ricochets, to protect the gallery from repeated strikes and protect the back side of the gallery by defining the firing line for targets so that it is backed by the stop butt.

At the rear of the gallery, a large earthen mound forms the stop butt. Directly behind the targets gravel filled boxes or bullet catchers are set on the face of the stop butt. These boxes act to capture bullet strikes after they have passed through the targets.

In addition, there are multiple firing mounds along the range spaced at 100m intervals set at 100-800m from the target area. A defined firing area used by pistol shooters is located on flat ground at approximately 25m from the targets.

A gallery area has been provided in-front of the stop butt face.

Formal and informal drainage system

A secondary area of potential concern identified at the 800m range is the new drainage system from the stop butt leading off site to the South East.

The rear area of the stop butt drains via a single channel to the south. This channel discharges over a flat area located 100-110m to the rear of the targets. Water then makes its way to natural drainage channels and upper tributaries of Rocky Waterholes Creek.

5.1.2 Sources of contamination and potential contaminants of concern

The OEMP for the SHRSC requires record keeping of the number of rounds /volume of bullets fired and the type of bullets fired so that annual estimates of shot fall can be calculated for each range for management purposes.

The 800m range is designed so that all bullets strike the mantlet face or the stop butt behind the target into the bullet catchers. These are the primary impact areas.

The material at the primary impact areas of the 800m range are able to be removed and sifted to remove bullet fragments or relocated for further treatment and/or removed from site as part of maintenance activities.

It is possible that some bullets may be fired over the stop butt entirely or similarly into the intermediate firing mounds along the range length prior to the target area (the secondary impact areas) however given this is a supervised range, this loss should be in very low volumes.

A broad suite of sample analytes was proposed within this SAQP given the potential variety of ammunition used at the range. However, the primary contaminant of concern at the 800m range is considered to be Lead (Pb). Lead is the predominant consitutent of ammunition shot used in most higher calibre rifles which have been used at the range.

The nominated suite of analytes for this site assessment is presented in Section 6.1 Tables 3A, B &C.

5.1.3 Identified contaminant migration pathways

The primary process for migration of contaminants from the stop butt and surrounds is identified to be via surface runoff and infiltration into the subsurface. Maintenance of stable ground cover over the surface acts to minimise potential for generation of dust from the area and also reduce potential for erosion and mobilisation of sediments. Maintenance may also include application of ameliorants to maintain a stable soil pH.

The CSM indicates the current pathways for surface water movement:

- The stop-butt benches and gallery drains as to the south east via new formal drainage infrastructure including subsoil drains, pits and open drains.
- Surface water runoff from the mantlet and the area immediately in front flows with other surface water from the range area to various points at the range perimeter.
- The area at the rear of the stop butt drains to the south via an open channel.
- Surface water at the side of the target area flows to the perimeter of the range.

The potential exists for leaching and vertical migration of contaminants into the subsurface from the primary and secondary shot fall areas. This potential is mitigated by the design of the gravel bullet catcher at the primary shot fall area which moves water more quickly to the formal drainage.

Depth to ground water is not known at the 800m range however based on the environmental assessment undertaken prior to construction of the SHRSC, groundwater is considered unlikely to be impacted by the contaminants of potential concern on the site. Therefore impacts on sources of potential water supply are not a consideration and as such Groundwater Investigations (GILs) for Fresh Waters will be used as the assessment level for management response.

5.1.4 Identified exposure routes

Three possible human exposure routes have been identified for the lead shot present at the range, they are:

- Direct contact by range users with lead impacted soils and shot
- Migration/infiltration of lead impacted surface water into retention ponds/basins and recreational water resources;
- Inhalation/ingestion of airborne lead impacted dust.

Direct contact

Two shot fall areas have been identified where direct contact (includes ingestion or absorbtion through the skin) with lead present in soil or shot by range users is possible where areas are not managed.

The primary impact areas where direct shot is received are the stop-butt face and the face of the mantlet. The secondary areas impact areas are the gallery and the areas in front of the mantlet. These areas in are shown on the CSM diagram.

Surface Water migration

Runoff and infiltration of rainwater that becomes impacted with lead could potentially have a low level impact on nearby downgradient surface water receptors however specific site drainage and water quality measures have been included in the design of the SHRSC to address and mitigate this potential.

Airborne dust ingestion/inhalation

Soil particles contaminated with lead around shot fall areas can become dry and be mobilized by wind events to either migrate off site or be ingested/inhaled by range users where areas are not managed.

5.1.5 Identified Receptors

The number of potential receptors identified are consistent between all the ranges at the SHRC:

- The SHRSC is situated within the Bargo State Conservation Area and is next to Nattai National Park which are known recreational areas and are home to local flora and fauna.
- The SHRSC is situated on a ridge line and drains to multiple drainage lines in the upper catchment. These are tributaries to Rocky Waterholes Creek which is a potential recreational water resource.
- SHRSC users and the general public visit the facility under supervised management protocols.

Receptor exposure will be managed under the OEMP which will take into account the specific shot fall patterns, ground cover requirements and direction of surface water movement at each range.

Site access restrictions and maintenance of suitable ground cover at the areas of potential concern will reduce the likelihood of direct human exposure to contaminants at the source.

5.2 50m: Conceptual Site Model (CSM)

The figure below provides a schematic CSM for the 50m range target area and surrounds. The CSM below aims to identify the following aspects relevant to the 50m range, they are:

- Areas of potential concern;
- Contaminants of potential concern;
- Potential contaminant expoure or migration pathways; and the
- Human and/or ecological receptors.

Additional elements of the CSM are discussed in the sections following.

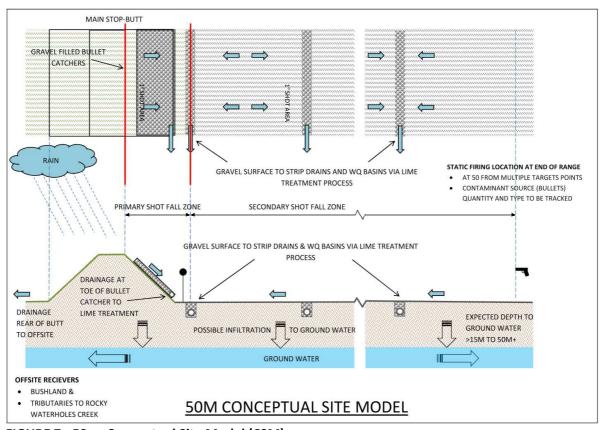


FIGURE 7 - 50m: Conceptual Site Model (CSM)

5.2.1 Existing infrastructure and layout

Stop butt and target area

The primary potential areas of concern identified at the 50m range are the target area, stop butt, bullet catcher, and surrounds.

The 50m Range consists of a five individual ranges separated by concrete dividing walls each with a single line of firing positions and a single stop butt behind the targets. The individual ranges are designed for varying uses; four are fully enclosed with gravel on the floor. The fifth range is more open with a grassed surface.

Behind the targets, a gravel filled bullet catcher is proved at the face of the stop butt.

Formal and informal drainage system

A secondary area of potential concern identified at the 50m range is the new drainage system from in front of the stop butt leading to Basin 5.

It is possible that some shot fall will occur within the floor area of the ranges.

Refer to Figure 8 for the current 50m Range layout.

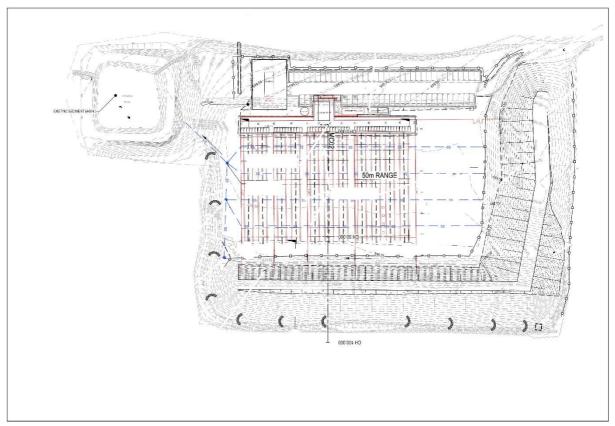


FIGURE 8 - 50m Range Layout

5.2.2 Sources of contamination and potential contaminants of concern

The 50 and 500m ranges are used by recreational and competitive shooters. The OEMP for the SHRSC requires record keeping of the number of rounds /volume of bullets fired and the type of bullets fired so that annual estimates of shot fall can be calculated for each range for management purposes.

The 50m range is designed so that all bullets strike the stop butt behind the target into the bullet catchers. These are the primary impact areas. Other areas within the range (e.g. the range floor) may receive bullet fall, ricochet or skip from the primary impact area. These are indicated as secondary impact areas on Figure 7.

The butt and bullet catcher at the 50m is designed to prevent the skipping of bullets or fragments to the rear of the butt. Ongoing sampling includes the rear of the stop-butt to confirm the effectiveness of design. It is possible that some bullets may be fired over the stop-butt entirely however, given this is a supervised range this loss should be in very low volumes.

The material at the primary impact areas of the 50m range are able to be removed and sifted to remove bullet fragments or relocated for further treatment and/or removed from site as part of maintenance or construction activities.

The type of bullets will be used to confirm the range of analytes for ongoing sampling. A broad suite of sample analytes is proposed within this SAQP given the potential variety of ammunition used at the range. However, the primary contaminant of concern at the range is considered to be Lead (Pb).

The suite of anolytes is presented in Section 6.2 Tables 5A, B & C

5.2.3 Identified contaminant migration pathways

The primary process for migration of contaminants from the primary and secondary impact areas and surrounds would be via surface runoff and potentially leaching to ground water. Maintenance of stable ground cover over the surface acts minimise potential for generation of dust from the area and also reduce potential for erosion and mobilisation of sediments. Maintenance may also include application of ameliorants to maintain a stable soil pH.

The CSM diagram indicates the pathways for surface water movement:

- A collection trench runs in-front of the stop butt of the 50m Range which directs surface water via a pipe to the lime treatment pit and then to the water quality basin
- No surface water from possible shot-fall areas (primary and secondary) is able to bypass the drainage to the Water Quality Basins.
- The new water quality basin has stable gabion spillways. The basins discharge to the natural catchment and then ultimately to the tributaries of Rocky Water Holes Creek.

The potential exists for leaching and vertical migration of contaminants into the subsurface from the primary and secondary shot fall areas. This potential is mitigated by the design of the gravel bullet catcher at the primary shot fall area which moves water more quickly to the formal drainage.

Environmental Assessment undertaken prior to the construction of the SHRSC presented that groundwater is expected at depths greater than 15m and likely greater than 50m (Refer to 2.4.5 Groundwater). Therefore, impacts on sources of potential water supply are not a consideration and as such Groundwater Investigations (GILs) for Fresh Waters will be used as the assessment level for management response.

5.2.4 Identified exposure routes

Three possible human exposure routes have been identified for the lead shot present at the range, they are:

- Direct contact by range users with lead impacted soils and shot
- Migration/infiltration of lead impacted surface water into retention ponds/basins and recreational water resources;
- Inhalation/ingestion of airborne lead impacted dust

Direct contact

Two impact areas have been identified where direct contact (includes ingestion or absorbtion through the skin) with lead present in soil or shot by range users is possible where areas are not managed.

The primary impact areas where direct shot is received are the stop-butt face and the face of the mantlet.

The secondary areas impact areas are the floor of the range especially in front of the target area and potentially at the rear of the stop butt. These areas in are shown on the CSM diagram.

Surface Water migration

Runoff and infiltration of rainwater that becomes impacted with lead could potentially have a low-level impact on nearby downgradient surface water receptors however specific site drainage and water quality measures have been included in the design of the SHRSC to address and mitigate this potential.

Airborne dust ingestion/inhalation

Soil particles contaminated with lead around shot fall areas can become dry and be mobilized by wind events to either migrate off site or be ingested/inhaled by range users where areas are not managed.

5.2.5 Identified Receptors

The number of potential receptors identified are consistent between all the ranges at the SHRC:

- The SHRSC is situated within the Bargo State Conservation Area and is next to Nattai National Park which are known recreational areas and are home to local flora and fauna.
- The SHRSC is situated on a ridge line and drains to multiple drainage lines in the upper catchment. These are tributaries to Rocky Waterholes Creek which is a potential recreational water resource.
- SHRSC users and the general public visit the facility under supervised management protocols.

Receptor exposure will be managed under the OEMP which will take into account the specific shot fall patterns, ground cover requirements and direction of surface water movement at each range.

Site access restrictions and maintenance of suitable ground cover at the areas of potential concern will reduce the likelihood of direct human exposure to contaminants at the source.

5.3 500m Range: Conceptual Site Model (CSM)

The figure below provides a schematic CSM for the 500m range target area and surrounds. The CSM below aims to identify the following aspects relevant to the 50m range, they are:

- Areas of potential concern;
- Contaminants of potential concern;
- Potential contaminant expoure or migration pathways; and the
- Human and/or ecological receptors.

Additional elements of the CSM are discussed in the sections following.

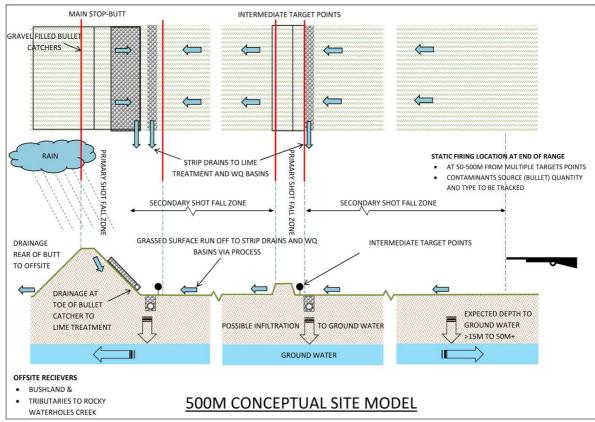


FIGURE 9 - 500m: Conceptual Site Model (CSM)

5.3.1 Existing infrastructure and layout

Stop butt and target area

The primary potential areas of concern identified at the 500m range are the target areas, stop butt & intermediate mound, bullet catcher and surrounds.

The 500m is a single range consists of a single firing point and multiple (x6) mounds and target points set along the range length with a 7^{th} Primary stop butt at the end of the range.

A gravel filled bullet catcher is proved at the face of the stop butt.

It is expected that significant shot fall will occur within the floor area of the range and into the intermediate target mounds.

Formal and informal drainage system

A secondary area of potential concern identified at the 500m range is the new drainage

system from the stop butt and intermediate mound.

Surface water from the 500m range fairway flows to strip drains set at the rear of the intermediate target mounds and at the toe of the stopbutt face. These drains then are connected via pipes to either of the two water quality basins.

Refer to Figure 10 for the for the current 500m Range layout.

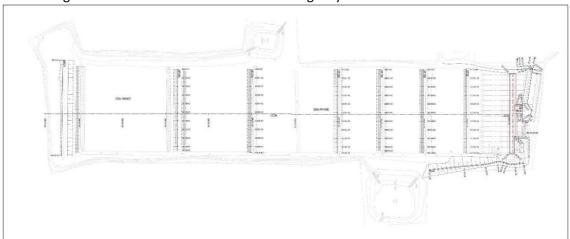


FIGURE 10 - 500m Range Layout

5.3.2 Sources of contamination and potential contaminants of concern

The 500m range is used by recreational and competitive shooters. The OEMP for the SHRSC requires record keeping of the number of rounds /volume of bullets fired and the type of bullets fired so that annual estimates of shot fall can be calculated for each range for management purposes.

The 500m range and its use are designed so that bullets strike the intermediate target mounds and the final stop butt at the end of the range. Significant shot fall is expected between the intermediate mounds and into the fairway. These are the primary impact areas.

It is possible that some bullets may be fired over the stop butt entirely or into adjacent off range areas. These are the secondary impact areas.

The butt at the 500m is designed to prevent the skipping of bullets or fragments to the rear of the butt. Ongoing sampling includes the rear of the stop-butt to confirm the effectiveness of design. It is possible that some bullets may be fired over the stop-butt entirely however, given this is a supervised range this loss should be in very low volumes.

The material at the bullet catcher at face of the stopbutt is able to be removed and sifted to remove bullet fragments or relocated for further treatment and/or removed from site as part of maintenance activities.

The type of bullets will be used to confirm the range of analytes for ongoing sampling. A broad suite of sample analytes is proposed within this SAQP given the potential variety of ammunition used at the range. However, the primary contaminant of concern at the range is considered to be Lead (Pb). The suite of anolytes is presented in Section 6.2 Tables 5A, B & C

5.3.3 Identified contaminant migration pathways

The primary process for migration of contaminants from the primary and secondary impact areas and surrounds would be via surface runoff and potentially leaching to ground water. Maintenance of stable ground cover over the surface acts minimise potential for generation of dust from the area and also reduce potential for erosion and mobilisation of sediments. Maintenance may also include application of ameliorants to maintain a stable soil pH.

The CSM diagram indicates the pathways for surface water movement:

- Strip drains in-front of the stop butt of the 500m Range which directs surface water via a pipe to the lime treatment pit and then to the water quality basin
- No surface water from possible shot-fall areas (primary and secondary) is able to bypass the drainage to the Water Quality Basins.
- The new water quality basins have stable gabion spillways. The basins discharge to the natural catchment and then ultimately to the tributaries of Rocky Water Holes Creek.

The potential exists for leaching and vertical migration of contaminants into the subsurface from the primary and secondary shot fall areas. This potential is mitigated by the design of the gravel bullet catcher at the stopbutt and at the drainage within the primary shot fall areas which moves water more quickly to the formal drainage.

Environmental Assessment undertaken prior to the construction of the SHRSC presented that groundwater is expected at depths greater than 15m and likely greater than 50m (Refer to 2.2.5 Groundwater). Therefore, impacts on sources of potential water supply are not a consideration and as such Groundwater Investigations (GILs) for Fresh Waters will be used as the assessment level for management response.

5.3.4 Identified Receptors

The number of potential receptors identified are consistent between all the ranges at the SHRC:

- The SHRSC is situated within the Bargo State Conservation Area and is next to Nattai National Park which are known recreational areas and are home to local flora and fauna.
- The SHRSC is situated on a ridge line and drains to multiple drainage lines in the upper catchment. These are tributaries to Rocky Waterholes Creek which is a potential recreational water resource.
- SHRSC users and the general public visit the facility under supervised management protocols.

Receptor exposure will be managed under the OEMP which will take into account the specific shot fall patterns, ground cover requirements and direction of surface water movement at each range.

Site access restrictions and maintenance of suitable ground cover at the areas of potential concern will reduce the likelihood of direct human exposure to contaminants at the source.

6 Sampling Analysis and Quality Plans

The following sampling plans detail sampling exercises in accordance the Monitoring Program detailed within Section 5 of the SHRSC WCMP.

- Section 5.4 of the WCMP provides frequency of scheduled sampling activities;
- Section 5.4 of the WCMP provides the concentrations of analytes used in the assessment;
- Section 5.3 of the WCMP provides information on constraints and limitations for sampling surface waters off range; and
- Section 5.5 WCMP provides adopted assessment criteria and derivation method for EILs.

During the sampling activity any variations from the SAQP should be recorded for reference in the future annual review.

6.1 SAQP for the 800m Range

Table 2 provides the Sampling Rationale Matrix for the 800m range.

TABLE 2 – Sampling F	Rationale Matrix (8	300m Range)	
Sample Location	Sample type	Context (in landscape) of Sample location	Rationale for selection
Bullet Catcher	Gravel (per Soil)	Primary Impact Zone	Confirm levels in area of expected contamination
Stop butt above bullet catcher	Soil	Face of stop- butt behind targets — impact area and adjacent to impact area	Confirm levels in area of expected contamination
Rear of stop butt	Soil	Possible shot fall area	Confirm no contamination
Bench in front of stop butt	Soil	Down gradient of stop butt impact area	Confirm levels in expected area of contamination. Identify contamination
Gallery	N/A	Shot fall area	Concrete area – record of cleaning to be made. Record visual inspection
Target Mound/Mantlet and associated drainage	Soil	Mound in front of galley – potential impact area	Confirm levels in expected area of contamination. Identify migration of contamination
Area in front of Mantlet	Soil	Outside drainage to impact areas	Identify migration of contamination
Over storeroom – west of gallery	Soil	Outside drainage to impact areas	Identify migration of contamination
New culvert East of Stopbutt	Soil	Down gradient of stop butt impact area	Confirm levels in expected area of contamination. Confirm/characterise migration of contamination
Mulched area behind stop butt	Soil	Down gradient of impact area— water quality area for stop butt	Confirm levels in expected area of contamination. Confirm migration of contamination

Outlet from	Soil,	Discharge point for	Assess for contamination
mulched area	water,	surface water	from local catchment
	sediment		
Basin:	Surface,	Surface water from	Assess for contamination
East of 800m	water	road and part range	from local catchment
range	sediment	areas	
Pits – Lime	Water,	Possible water and	Monitor function of lime
treatment	Sediment	sediment from	treatment process. Assess
process	if present	primary impact area	for failure of control and
		stop butt and	movement of sediment
		surrounds	

Tables 3A -C provide the suite of analytes, planned location and numbers of samples at the 800m range as prepared for the SAQP.

Metals of concern included in the analysis suite are those to be common in the composition of bullets.

Depth of samples is generally 100mm as this is reflects the expectation of shot fall lying on or near to the surface and also the possible migration of contaminants primary via surface run off.

Additional samples may be taken in other locations due to site conditions and observations made at the time of sampling.

TABLE 3A: SOILS (INC GRAVELS) – (800m Range)				
Analytos/Suito	Locations	Number		
Analytes/Suite	Locations	(SAQP)		
PAH	Stop butt/bullet catcher (impact area behind targets)	2		
Cadmium	Stop butt non-shot area – between bullet catchers	2		
Arsenic	Stop butt directly under bullet catcher	2		
Chromium	Gallery area- concrete	NIL-Visual		
Mercury	Bench at front of butt/foot of stop butt	only		
Nickel	Target mound/mantlet	3		
Tin	In front of target mound/mantlet and associated	3		
рН	drainage	3		
Lead	Stop butt -rear	1		
Copper	West of Gallery (grassed area over store room)	1		
Zinc	Below outlet of culvert from stop butt drainage	2		
Antimony	Exit channel from sump to offsite- to flow line over			
Iron	escarpment	2		
CeC				
Clay Content	Duplicate samples			
TCLP	Triplicate samples	2		
(for samples		2		
with elevated				
results only)				
	Total	25		

TABEL 3B: WATER (800m Range)				
Analytes/Suite	Locations	Number		
Nickel	Basin adjacent to 800m range	1		
Arsenic	Reservoir in lime treatment unit	1		
Chromium	Channel at rear of 800m range (If available)	1		

Total	Pit within Lime treatment process (if accessible and	1
Phosphorus	water present)	
(TP)		
Total Nitrogen		
(TN)		
Ammonia		
(NH3)		
Dissolved		
Oxygen (DO)		
pH 1		
Lead		
Copper		
Zinc		
Antimony		
Phosphate		
	Total	4

TABLE 3C: SEDIMENT	TABLE 3C: SEDIMENT (800m Range)				
Analytes/Suite	Locations	Number			
PAH	Basin adjacent to 800m range	1			
Cadmium	Pit within Lime treatment process (if accessible and	1			
Arsenic	sediment present)				
Chromium					
Mercury					
Nickel					
Tin					
Clay Content					
рH					
Lead					
Copper					
Zinc					
Antimony					
Iron					
CeC					
TCLP (for					
samples with					
elevated					
results only)					
	Total	2			

6.2 SAQP for the 50m and 500m Range

Table 4 below gives the Sampling Rationale Matrix for the 50 and 500m Ranges.

Sample Location	Sample	Context (in	Rationale for selection
	Туре	landscape) of Sample location	
On range (500m)	Soil	Main body of range / fairway/shot	Identify contamination – confirm no migration of contamination
		zone	
On range (50m)	Soil or Gravel	Main body of range	Identify contamination – confirm no migration of contamination
Face of stop butt / bullet catcher	Gravel	Impact area of range	Confirm concentrations of expected contamination
Face of stop but above bullet catcher	Soil	Potential impact area of range	Confirm concentrations of expected contamination
Area immediately in front of toe of stop butt associated drainage	Soil	Outside drainage to impact area	Confirm no migration of contamination
Basins/basins	Water, sediment	Basins receive water from range areas	Confirm no migration of contamination Confirm water quality parameters
Rear of stop butt	Soil	Possible shot fall area	Confirm no contamination
Creek water off range (where available from Ephemeral creeks following rainfall or from natural pools)	Water, sediment	Separate from range run off	Confirm no migration of contamination. Confirm water quality parameters
Pits within the Lime treatment process (Note Lime and directional pits do not retain water)	Water, Sediment if present	Possible water and sediment from primary impact area stop butt and surrounds	Monitor function of lime treatment process. Assess for failure of control and movement of sediment

Tables 5A -C provide the suite of analytes, planned location and numbers of samples at the 50m and 500m ranges as prepared for the SAQP.

Metals of concern included in the analysis suite are those to be common in the composition of bullets.

Depth of samples is generally 100mm as this is reflects the expectation of shot fall lying on or near to the surface and also the possible migration of contaminants primary via surface run off.

Additional samples may be taken in other locations due to site conditions and observations made at the time of sampling.

TABLE 5A: SOILS				
Analytes/Suite	Range	Locations	Number	
PAH	500	On range – 1 from each target bay	7	
Cadmium		- plus random over all bays (max 2	3	
Arsenic		per bay)	5	
Chromium		Off range / bush land	3	
Mercury		Face of stop main stop butt	6	
Nickel		-plus 1 from each intermediate	3	
Tin		mound		
рН		Within 10m in-front of toe of main	6	
Lead		Stop-butt and associated drainage		
Copper		-plus 1 from in front of each		
Zinc		intermediate mound		
Antimony	50	On range – gravel or soil range floor	3	
Iron		Off range / bushland	3	
CEC		Face of stop butt – bullet catcher	3	
Clay Content		Face of stop butt – from above bullet	2	
TCLP		catcher	1	
(for samples		Soil material below invert of bullet	3	
with elevated		catcher		
results only)		Within 10m in-front of toe of Stop-		
		butt and associated drainage		
	50m/500m	Duplicate sample	1	
	range	Triplicate sample	1	
	Total		50	

TABLE 5B: WATER	TABLE 5B: WATER			
Analytes/Suite	Locations	Number		
Nickel	Basin at car park (Basin 4)	1		
Arsenic	50m (Basin 5)	1		
Chromium	500m East (Basin 3)	1		
Total	500m West (Basin 2)	1		
Phosphorus	200m (Basin 1)	1		
(TP)	Creek waters off range (where available from Ephemeral	2		
Total Nitrogen	creeks following rainfall or from natural pools)			
(TN)	Pits in Lime treatment process (if accessible/ present)	8		
Ammonia	Duplicate sample	1		
(NH3)	Triplicate sample	1		
Dissolved				
Oxygen (DO)				
pH 1				
Lead				
Copper				
Zinc				
Antimony				
Phosphate				
Turbidity				
	Total	18		

TABLE 5C: SEDIMENT		
Analytes/Suite	Locations	Number
PAH	Basin at car park (Basin 4)	1
Cadmium	50m (Basin 5)	1
Arsenic	500m East (Basin 3)	1
Chromium Mercury	500m West (Basin 2)	1
Nickel	200m (Basin 1)	1
Tin	Creek waters off range (where available from Ephemeral	2
Clay Content	creeks following rainfall or from natural pools)	
pН	Dita within Line to the set of th	0
Lead	Pits within Lime treatment process (if present)	8
Copper		
Zinc		
Antimony		
Iron		
CEC		
TCLP (for		
samples with		
elevated		
	Total	15

6.3 Visual Inspections

Section 5.4 of the SHRSC WCMP presents the items and frequency for visual inspections. These inspections are summarised following.

6.3.1 Water quality structures and surrounds

Inspect water quality basins for;

- evidence of scour from flows at inlet or outlet
- evidence of scour or failure at inside batters of structures
- evidence of scour, instability or failure of external batters of structure

6.3.2 Engineering controls – earthworks

Inspect Berms, drains channels, stock butts, access tracks and culverts for;

- evidence of scour from flows at inlet or outlet of culverts and channels or at invert of channels and drains.
- evidence of instability or erosion of track surfaces and associated drainage.
- evidence of scour, instability or failure of batters or formation of stopbutts.

6.3.3 Engineering controls – lime treatment process

Inspect accessible subsurface elements of lime treatment process / Engineering controls for;

- Evidence of fragments of bullets and other extraneous materials within pits or chambers of the treatment control.
- Evidence of sediment washed into pits or chambers of the treatment control.

6.3.4 Safety and signage

Inspect site safety and signage including fencing around sediment basins and drainage measures for;

- Visibility of signage
- Location per that in SHRSC OEMP
- Condition

6.3.5 Shot loss

Inspect Range perimeter, especially 800m and 500m ranges for;

• Evidence of loss and/or damage from stray projectiles

6.3.6 Vegetation health

Inspect vegetation heath of range floor and revegetated areas for;

- Percentage of ground cover -equivalent to C factor of 0.1 or lower (see WCMP)
- and vigour

6.4 Methodology

6.4.1 Soil sampling methodology

- 1. Soil Samples are to be collected in ~250ml glass sample jars provided by the Analytical Laboratory. Jars are to be labelled with;
 - Project title
 - Sample ID Number
 - Depth of Sample
 - Date of Sample
 - Identifier of Officer taking Sample
- 2. Samples will then be packed in a cooler with ice packs prior to being transported to the laboratory and tracked under chain of custody documentation.
- 3. Soil samples to be collected using a shallow auger or similar within the top 100mm of the soil surface where bullet or fragments was expected to be present (unless indicated otherwise).
- 4. Where soil material is too hard or soft for the auger, material was collected using a hand mattock/tool.
- 5. Where soils are observed to be excessively friable or where rocks/vegetation were present repeated samples are to be collected adjacent to each other to obtain an adequate sample volume.
- 6. Soil samples below 100mm if required are to be collected using a hand auger with extensions.
- 7. Vegetation/grass and rocks/gravel are to be screened from the samples collected.
- 8. Where shot fragments or projectiles are found in the sample these are to be removed and their presence recorded so that pure lead shot is not included in the sample submitted for analysis.
- 9. Between each sample collection the auger or hand tool is to be decontaminated by removing excess material from the face of the tool and washed down with distilled water.
- 10. Nitrile gloves are to be worn during sample collections and changed between locations to avoid cross contamination from the samplers hands.

6.4.2 Sediment sampling methodology

- 1. Sediment Samples are to be collected in ~250ml glass sample jars provided by the Analytical Laboratory. Jars are to be labelled with;
 - Project title
 - Sample ID Number
 - Depth of Sample

- Date of Sample
- Identifier of Officer taking Sample
- 2. Samples are then then packed in a cooler with ice packs prior to being transported to the laboratory and tracked under chain of custody documentation.
- 3. Sediment samples are to be collected within identified contaminant flow paths from ground level alluvium in surface water channels or from settled sediments at the sides of the water quality basins using a hand mattock or similar suitable collection tool.
- 4. The collection tool is to be decontaminated using distilled water prior to collection.
- 5. Nitrile gloves are to be worn during sample collections and changed between locations to avoid cross contamination from the samplers hands.

6.4.3 Water sampling methodology

- 1. Water samples are to be collected in a laboratory prepared and provided collection bottle. Bottles are to be labelled with;
 - Project title
 - Sample ID Number
 - Depth of Sample
 - Date of Sample
- 2. Samples will be collected from water quality basins using a sample bailer/pre-washed bottle attached to a sampling pole so samples could be collected from greater than 1.5m from the edge of the basin.
- 3. Samples collected from natural streams or pools within streams are to be collected from the middle of streams / pools.
- 4. Prior to collecting a sample the sample bailer bottle is rinsed with distilled water. And the rinsate is discarded well away from sample location.
- 5. Water samples were transferred to the collection bottles provided by the laboratory. Samples were then packed in a cooler with ice packs prior to being transported to the laboratory and tracked under chain of custody documentation and within the confirmed holding times for the various analytes.

Field Sampling

Field sampling of Soil pH or Water (pH or Turbidity) are to be undertaken in accordance with the instrument guidelines.

Field instruments are to be confirmed as calibrated per instrument guidelines and before every sampling exercise undertaken as part of the Monitoring Program within the SHRSC WCMP.

6.5 Laboratory QA QC

The following information has been provided by the laboratory selected for the analysis (Envirolab Services Chatswood NSW.)

NATA Accreditation

Envirolab is accredited by NATA to ISO 17025 under corporate accreditation number is 2901. **Quality Assurance**

Envirolab is NATA accredited to AS ISO/IEC 17025. This includes all aspects of the analytical process including sample preservation, sample registration, methodology, instrument calibration and maintenance, data records, calculations and reporting of results. The laboratory operates under a definitive plan which specifies the measures used to produce data of a known precision and bias. The quality assurance plan includes implementation of Quality Control and Quality Assessment Procedures.

Quality Control is a set of measures within a sample analysis methodology to assure that the process is in control.

Quality Control measures included:

- Certification of operator competence
- Recovery of known additions
- · Analysis of externally supplied standards
- Analysis of reagent blanks
- Calibration with standards
- Analysis of duplicates
- Control charts

Quality Assessment is the procedure for determining the quality of laboratory measurements by use of data from internal and external quality control measures. Quality Assessment measures included:

- Laboratory inter-comparison trials
- Performance evaluation samples
- Performance audits

Envirolab met or exceeded NEPM (2013) guidelines for QC for this assessment.

The Quality Control guidelines for this assessment were:

- Duplicate: every 10 samples or per batch if <10
- Matrix Spike: every 20 samples or per batch if <20
- LCS: every 20 samples or per batch if <20
- Blank: every 20 samples or per batch if <20

6.6 Laboratory Methods

Tables 6A and 6B below summarise the laboratory methods and NATA accreditation for each of the anolytes for Soil/Sediment and Waters. Details within this table have been taken from the laboratory's capability statement.

Table 6A :Soil /Sed	diment			
Analysis suite	Technique	Reference method	PQL mg/L	NATA
Cadmium	020 ICP-AES	NIOSH 7301	0.4	Υ
Arsenic			4	
Chromium			1	
Mercury			0.1	
Nickel			1	
Tin			1	
Lead			1	
Copper			1	
Zinc			1	
Antimony			7	
Iron			1	
PAH	Org-012	USEPA 8270	+ve/-ve	Υ
	subset			
CEC	ICP	Aust. Lab Handbook 15B3	1meq/100g	
Clay Content	Hydrometer		1%	
рН	soil/water electrode	USEPA 9045	0.1 unit	Υ

Analysis suite	Technique	Reference method	PQL	NATA
рН	Electrode	APHA4500H+	0.1 unit	Υ
Arsenic	Metals-022	USEPA 200.8	1 μg/L	Υ
Chromium	ICP-MS	USEPA	1 μg/L	
Nickel		3005A (prep) USEPA	1 μg/L	
Lead		6020A	1 μg/L	
Copper		0020A	1 μg/L	
Zinc			1 μg/L	
Antimony			1 μg/L	
Phosphate	Colourmetric	EPA 365.1	0.005mg/L	Υ
Ammonia	Paste	EPA 350.1	0.005mg/L	Υ
Total	Colourmetric	APHA4500-	0.1 mg/L	Υ
Nitrogen		Norg		
Total	ICP-AES or	USEPA 200.7	0.05mg/L	Υ
Phosphorous	Colourmetric	or APHA		
		4500-P		
Dissolved		Inorg-112	0.1	
Oxygen				

7 Site Assessment Criteria

7.1 Rationale for Selection of Assessment Criteria

The following published assessment criteria have been referenced in the summary of results tables to characterise the contamination status of the site.

Comments are offered detailing why each criterion has been selected.

Section 6.1.1 presents the method for determination of EILs used for this assessment.

The data previously collected from non-operational areas of the SHRSC and surrounds has been used to determine Ambient Background Concentrations (ABC) as part of derivation of the EILs to be applied on the operational ranges.

Soil

NEPM

National Environment Protection (Assessment of Site contamination) Measure (2013) Health investigation level (HILs)

- C Developed Open Space such as parks, playgrounds, playing fields
- D Commercial/industrial includes premises such as shops, offices, factories and industrial sites.

The site is currently zoned as SP1: Special Activities – Shooting Range. The HIL C has been adopted as Tier 1 soil trigger values for management response. The HIL D have been presented for comparison and further discussion given that the shooting ranges are proposed to be managed and operated as a commercial facility.

NEPM

National Environment Protection (Assessment of Site contamination) Measure (2013) Ecological Investigation Levels (EILs)

<u>Sediment</u>

ANZECC

Water Quality Guidelines Chapter 3- Section 3.5.4 Table 3.5.1 Interim Sediment Quality Guidelines (LOW and HIGH triggers) (Australian and New Zealand Guidelines for Fresh and Marine Water Quality, Australian and New Zealand Environment and Conservation Council, 2000)

<u>Water</u>

ANZECC PFWS

Protection of fresh water species - 95% level of protection trigger values (Australian and New Zealand Guidelines for Fresh and Marine Water Quality , Australian and New Zealand Environment and Conservation Council, 2000) (Note that the NEPM GILs for Freshwater have been adopted from the ANZECC 2000 guidelines.)

The ANZECC PFWS was selected due to the proximity to fresh water courses and fresh groundwater

ANZECC RWCG

Recreational Water Quality Guidelines (Australian and New Zealand Guidelines for Fresh and Marine Water Quality, Australian and New Zealand Environment and Conservation Council, 2000)

NEPM

National Environment Protection (Assessment of Site contamination) Measure (2013) Ground Water Investigation Levels (GILs) for Freshwater.

GILs for Antimony (Sb), within the 2000 Australian and New Zealand Guidelines for Fresh and Marine Water Quality, Volume 2. Aquatic Ecosystems — Rationale and Background Information (Chapter 8) are not available due to insufficient data. As such a Low Reliability Trigger Value has been adopted.

7.1.1 Derivation of Ecological Investigation Levels (EILs)

This section presents the NEPM 1999 (amended 2013) method adopted by ErSed to derive the Ecological Investigation Levels (EILs) for this assessment.

Ecological Investigation Levels EILs (EILs) have been derived by summing the Ambient Background Concentration (ABC) and the Added Concentration Limit for the contaminants of concern i.e.

EIL= ABC + ACL

Derivation of ABC

Samples were collected from non-operational areas of the SHRSC and the heavy metal analytical results were used as a background sample data set. Data from samples collected from surface soils taken from drainage areas (sediments) was also used within the set.

Where sample results were below the limit of laboratory detection (i.e. <LOR) these were adjusted to the detection limit. The geometric mean of the data was used as the ABC to derive the EIL.

Derivation of ACL

Ambient Concentration Limits (ACLs) for metal analytes have been referenced from Tables 1(B) Schedule B1 (NEPM 2013).

Where required the geometric mean of pH and CEC have been used to calculate the ACL. The geometric mean for the clay content from samples taken from the 800m range has been used as a conservative value.

For the calculations of the EILs for lead (Pb) and copper the consultant has assumed that the criteria for public open space is the most relevant to the current site use.

7.1.2 Referenced NEPM 1999 (2013) Tier 1 Health Investigation Levels (HILs)

Published human health investigation criteria (HILs) have been sourced from table 1A Schedule B1 NEPM 1999 (Amended 2013).

As the site is currently zoned as SP1: Special Activities – Shooting Range, the HILs C – Recreational criteria will be applied.

Part B: Monitoring Program Implementation and Report

8 Monitoring Program – Implementation

Table 7 below summaries the required frequency operational monitoring detailed in Section 5.4 of the WCMP

Table 7: Annual Operational Monitoring Program

What to be m	What to be monitored		
Soils	- Complete (Laboratory)	Annually	
	- pH (Laboratory)	Six monthly	
	- pH (Field with laboratory confirmation at 10% of samples)	Quarterly	
Sediments	- Complete (Laboratory)	Annually	
	- pH (Laboratory)	Quarterly	
	- pH (Field with laboratory confirmation at 10% of samples)	Six monthly	
Surface	- Complete (Laboratory)	Six monthly	
Waters			
Visual	- Basins	Annually	
	- Engineering controls		
	- Gallery (800m Range)		
	- Lime treatment process		
	- Safety and signage		
	- Range perimeter	Six monthly	
	- Vegetation health		

Table 8 below presents the annual monitoring program prepared to meet requirements detailed within section 5.4 the WCMP.

Table 8: Monitoring Program Schedule

Quarter	Activities	See Report Section
1	Field Sampling – pH in Primary and Secondary Impact Areas SoilsSediments	Part B this Report
	Six Monthly Visual Inspections WQ Basins Engineering Controls Lime Treatment Process Safety and Signage Vegetation Health	
2	Six Monthly Monitoring pH in Primary and Secondary Impact Areas	Not included in this report
3	Field Sampling – pH in Primary and Secondary Impact Areas • Soils	Not included in this report

	Sediments	
	Six Monthly Visual Inspections	
	WQ Basins	
	 Engineering Controls 	
	 Lime Treatment Process 	
	 Safety and Signage 	
	Vegetation Health	
	Annual Visual Inspection of Range perimeter for shot loss.	
4	Annual Monitoring	Not included in this
	• Soil	report
	Surface Waters	
	 Sediments 	

Summaries of each sampling event are provided in the following sections. Laboratory results for monitoring events are provided within Appendixes;

• Appendix 1: Quarter 1 Laboratory Results

8.1 Monitoring Program – Quarter 1

A samplings exercise was undertaken 18 November 2022 in accordance with Section 8. A summary of the sampling event is given below.

Summary of sampling event

Table 9: Quarter 1 Sampling Event

Aspect				See Report Section	
Field Sa	npling			9.1	
•	Soil pH	I in Primary and Secondary Impact Areas			
•	Sediments				
Addition	al follo	wing recommendations from previous sampling			
•		ampling of surface waters is also included to support mo Quarters	onitoring within		
•	Ammo stop b	nia as N - If water is present within the drainage line at utt	rear of 800m		
Departu		dditional			
•	Field s	ampling to be replaced by laboratory testing as preferre	d alternative		
Additio	nal sam	ples/analysis was taken per the table below			
Sample		Location	Analysed for		
122 (So	il)	Drainage interface with car park – north side of Range 1 – 50m	Full suite		
324 (So	il)	Sediment/Soil from rear channel upper – 800m range	Full suite		
330 (W	ater)	Rear channel – 800m	Full suite		
332 (W	ater)	Rear channel – 800m	Full suite		
Six Mon	thly Vis	ual Inspections		9.2	
•	WQ Basins				
•	Engine	eering Controls			
•	Lime Treatment Process				
•	Safety	and Signage			
•	-	ation Health			
	J				

8.2 pH Soil, Sediments and Surface Waters

The results from the QTR1 sampling exercise are provided for each range following. Results outside the target criteria are indicated in RED.

Results are discussed at Section 9.3.1 following.

8.2.1 Results – pH Soils, Sediments and Surface Waters 50m range

Table 10: Soils Sediment and Surface Waters 50m range

TABLE 10	DATE: 18 NOV 22
SOIL & SEDIMENT & SURFACE WATERS RESULTS 50m	DATE: 18 NOV 22

Sample ID	Sample Location	pH Units
SOILS AND SEDIM	IENTS	6.5-8.5
101	Range 1 - Floor	7.5
101	Range 1 - Floor	7.6
102	Range 2 - Floor	7
103	Range 3 - Floor	6.8
104	Range 5 - Floor	6.7
105	Bushland - South	5.2
106	Bushland - West	5.3
107	Bushland - North	5.3
108	Bullet catcher 1	6.4
109	Bullet catcher 4	6.5
110	Bullet catcher 2	6.2
110	Bullet catcher 2	6.3
111	Above b-catcher 2	8.4
112	Above b-catcher 4	8.4
113	10m in-front BC 5	7.3
114	10m in-front BC 2	7
115	10m in-front BC 3	6.8
116	Sediment Basin 5	6.1
119	Mound Range 1	8
122	Sediment – from interface with drain NE corner Range 1	7.6
WATER		6.5-8.5
117	Basin 5 – 50m	7.9
118	Basin 5 – inlet pipe 50m	7.2

8.2.2 Results – Soils, Sediments and Surface Water 500m range

Table 11: Soils Sediment and Surface Waters 500m range

TABLE 11 SOIL & SEDIMENT RESULTS 500m		DATE: 18 NOV 22
Sample ID	Sample Location	рН
RANGE OF VALUE	S - SOIL	6.5-8.5
201	Bushland South	5.4
201	Bushland South	5.4
202	Bushland East 1	5.5
203	Bushland West 1	5
204	Bushland West 2	5.1
205	Bushland North	5.2
206	Container Area	6.5
210	Range floor 300-385m	5.9

ABLE 11 OIL & SEDIMEN	NT RESULTS 500m	DATE: 18 NOV 22
Sample ID	Sample Location	рН
RANGE OF VALU	JES - SOIL	6.5-8.5
211	Range floor 0-50m	5.4
212	Range floor 50-100m	6
213	Range floor 100-150m	6
213	Range floor 100-150m	6
214	Range floor 150-200m	6.1
215	Range floor 200-300m	5.6
216	Range floor 300-385m	5.7
217	Range floor 385-500m	5.3
218	Range floor 100-150m	5.4
219	Range floor 200-300m	5.7
221	Intermediate Mound 50m	5.7
222	Intermediate Mound 100m	7.7
223	Intermediate Mound 150m	8.4
223	Intermediate Mound 150m	8.5
224	Intermediate Mound 200m	8.5
225	Intermediate Mound 300m	7.5
226	Intermediate Mound 385m	6.1
227	Stop butt West	6.6
228	Stop butt Central	7.2
229	Stop butt East	6.7
231	10m Mound 50m	6.5
232	10m Mound 100m	6.1
233	10m Mound 150m	7.6
233	10m Mound 150m	7.5
234	10m Mound 200m	7.3
235	10m Mound 300m	6.1
236	10m Mound 385m	7.4
237	10m Stop Butt West	6.7
238	10m Stop Butt Central	6.3
239	10m Stop Butt East	7.3
241	Sediment Basin 2	7.4
243	Sediment Basin 3	7
245	Sediment Below Basin 2	6.7
245	Sediment Below Basin 2	6.7
261	Sediment Basin 1	6.6
263	Sediment Below Basin 1	6.4
265	Sediment Basin 4 (Car Park)	5.5
RANGE OF VALU	JES – WATER	6.5-8.5

TABLE 11 SOIL & SEDIMENT RESULTS 500m		DATE: 18 NOV 22
Sample ID	Sample Location	рН
RANGE OF VALUE	S - SOIL	6.5-8.5
242	Basin 2 – 500m West	8.7
244	Basin 3 – 500m East	7
262	Basin 1- 200m	7.6
264	Creek below Basin 1	7.1
266	Basin 4 – Car Park 50/500	6.8

8.2.3 Results – Soils, Sediments and Surface Waters 800m range

Table 12: Soils Sediment and Surface Waters 800m range

TABLE 12 20	22 SOIL & SEDIMENT RESULTS 800m	DATE: 18 NOV 22
Sample ID	Sample Location	рН
RANGE OF \	/ALUES - SOIL	6.5-8.5
301	Below B-Catcher 1	6.5
302	Below B-Catcher 5	8.9
303	Butt above BC 1	7.2
304	Butt between 2-3	6.8
305	Top of Butt 3	8
305	Top of Butt 3	8.1
306	Top of Butt 4	7.6
307	Mantlet West	6.7
308	Mantlet Central	6.2
309	Mantlet East	6.4
310	10m Mantlet W	8.2
311	10m Mantlet C	7.5
312	10m Mantlet E	7.9
313	Bench Butt W	6.2
314	Bench Butt C	7
315	Bench Butt E	7.8
316	Rear of Butt	7.3
317	Over Storeroom	5.6
318	Culvert Upper	6.8
319	Stormwater Lower	6.3
320	Rear channel Upper	6.2
321	Rear channel Lower	7
322	Sed 800m Pond	5.5
323	Sediment Gallery	6.3
323	Sediment Gallery	6.3
324	Rear channel Upper	6.7

RANGE OF VALUES – WATER		6.5-8.5
330	Rear Channel 800	6.5
331	Pond side of 800	2.4
332	Rear Channel 800 (upper)	10.1

8.3 Six Monthly Visual Inspections

The observations from the QTR1 visual inspection are provided for each range following.

Results are discussed at Sections 8.2.1-8.2.4 following.

8.3.1 50m range

Table 13: Visual Inspection, 50m Range and Surrounds

Basins Basin 5 (at 50m range)

- The basin is full
- Note scour near entrance has not progressed.

• Spillway and outlet area stable

Scour over batter at entrance to basin enclosure

Does not seem to be progressing

No further action required at this time.

Vegetation Health/Surface cover

Range/Bay 1

- Evidence Water pooling in central area not serious
- Note riling over batter of butt to South western side

Mound SE of Range/Bay1

 Vegetation cover is good and approaching 100%- surface stable

Other Ranges (2-5)

• Grave surfaces are weed free

Top of Stop butt at 50m

- Some riling at front of batter multiple locations
- Occurs where water is pooling on top of butt formation and overflows over face

Rework of top of the mound formation will be required to prevent surface water passing over the batters of the stop butt.

This issue will be monitored to confirm if the issue progresses.

Vegetation external to the 50m Range

- Weeds are establishing over the septic area –
- This will require management as part of the annual program.

 Surface weeds in path areas require management as part of the annual program.

- Vegetation is establishing in the drainage swales around the western side of the site.
- This is not compromising the drainage function.

- Bushland is regenerating strongly post the fires of 2020.
- External vegetation is healthy

Engineering controls - 50m range

Lime Treatment Process

- The lime treatment process is a closed sealed unit.
- Inspection of the unit is not possible

This item has been removed from sampling program. Servicing or inspection by a qualified technician may be recommended by monitoring outcomes.

Pit at South East corner of 50m stop butt

Pit is full of sediment and being bypassed

Modification of this outlet area may be required.

- Drain to stormwater pit bare
- Minor sediment loss evident

Further stabilization of the back of the mound will be required to reduce the sediment load to the drainage outlets.

Road Infrastructure and Drainage	Road Infrastructure and Drainage for the 50m range is addressed within Section 8.2.2
Safety and Signage	Safety and signage for the 50m range is addressed within Section 8.2.2

8.3.2 500m range:

Table 14: Visual Inspection, 500m Range and Surrounds

Basins

Basin 2 (500m west)

- Basin is full to trickle/low flow level
- Inlet and outlet areas to basin are stable
- Water is very clear

Basin 3 (500m east)

- Basin is full to trickle/low flow level
- Significant re work has been undertaken at the main (Southern) inlet of the basin with placement of rock
- Water is passing out the side of the inlet control and is Leading to scour adjacent to the inlet

It is likely that re work of the inlet structure will be required

- Vegetation is establishing around the secondary/northern inlet to the basin
- This is not compromising its function
- The outlet control is stable
- The area below the outlet is stable

Vegetation Health Surface Cover General comments to vegetation on 500m range

- No significant erosion evident
- Significant percentage of surface cover provided by moss and lichens and weeds
- In several bays drainage is an issue this will limit plant growth in the heavy or compacted soils
- Absence of real topsoil is a limitation in long term. Also very low organic matter

Shooting Point 0m to Intermediate mound 50m

- Vegetation cover >70%
- Some patchy areas closer to shooting point (northern end)
- Nil erosion evident
- Surface indicates that water is detained in the area
- Thick cover of clover at time of inspection

Intermediate mound 50m to intermediate mound 100m

- Vegetation cover >70%
- Clover cover
- Nil erosion evident
- Evidence ponding over central area

Intermediate mound 100m to intermediate mound 150m

- Vegetation cover >70%
- Clover cover
- Nil erosion evident
- Note that the slumping to landscape mound has been repaired and re landscaped

Intermediate mound 150m to intermediate mound 200m

- Vegetation cover >70%
- Clover cover
- Nil erosion evident
- Significant moss cover to provide surface cover

Intermediate mound 200m to intermediate mound 300m

- Vegetation cover >70%
- Clover cover
- Nil erosion evident
- Poor drainage at rear of target

Intermediate mound 300m to intermediate mound 385m

- Vegetation cover >70% +
- Nil erosion evident
- Mosses and Lichens

Intermediate mound 385m to 500m Butt

- Vegetation cover >70% +
- Nil erosion evident
- Mosses and Lichens

New lay-down area located to north of basin2

- Gravel surface
- 4 shipping containers placed to replace storage lost in
- No significant weeds over gravel

• Swale drains western side of 500m west – covered with litter, some vegetation and are stable

- Swale drain leading to south west corner of 500m stop butt
- Invert of drainage swales bare with some scour/sediment loss evident
- New rock check dams installed
- rock size too large & no fabric installed causing water to be focused through with scour underneath

Recommend intermix smaller rock (75mm-150mm) into gaps of existing structures plus some smaller rock (diameter 25mm)

Rock inlet to stormwater pit located western corner at rear of butt

 Sediment from drainage swale accumulating in rock work

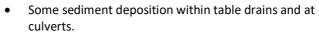
New rock work at inlet to Basin 3 (500m East)

• Rock work is stable

Swale drains at 500m east

- Some sediment movement observed between the check structures.
- Grass is establishing over the sides and invert of the drain in some areas

Top of Stop butt at 500m


- Some riling at front of batter
- Occurs where water is pooling on top of butt formation and overflows over face

This may require re work in the future.

Engineering controls: Road Infrastructure and Drainage

- All road areas are stable
- Some minor erosion within invert of table drains

Maintenance of these area should be scheduled

- Northern car park
- The northern carpark is stable
- Note stockpiled mulch /woodchip at eastern end of car park

Safety and signage

• Safety direction signage in place

8.3.3 Other Basins

Table 15: Visual Inspection, Other Basins

Basin 1 (at future 200m range)

- Surrounds to basin are stable
- Basin is full to low flow outlet pipe
- Water is very clear

- Rock work at the invert has been moved by flows
- Geotextile has been exposed

Additional works may be required in this area

Outlet control/spillway is stable

Basin 4 (at car park)

Basin inlet and outlet stable
 Basin full of reeds
 Water is dark / tannin stained

8.3.4 800m range

Table 16: Visual Inspection 800m Range and Surrounds

Basin 7/Bushland Pond Basin partially full of water
Vegetative health 0-100m from target • First 6-10m veg cover is more patchy (see below) • Rest of range grass cover good (>70%)
Vegetative health first 6-10m from Mantlet ■ 50-70% cover with patchy bare areas
Vegetative health – bench in-front of stop but and bullet catchers
Vegetative health face of stop butt • Grass cover over bench 100%

Concrete Galley

- Sediment within swale at gallery
- Otherwise swept clear.

Engineering controls: Road Infrastructure and Drainage

Roads and Access tracks

Access track in good condition

No Photo

Safety and signage

• New fencing and signage provided at the entrance

Engineering controls: Lime treatment Process

- The lime treatment process is a closed sealed unit.
- Inspection of the unit is not possible without specialist equipment / tools to open
- Access to these tools have been discussed with range management

Lime treatment process

- Western pit lit has been partially dislodged
- This was confirmed with the range manager

8.4 Discussion of results

8.4.1 (pH) Soil, Sediments and Surface Water

The following samples returned pH values outside the target range of pH 6.5-8.5; Discussions of results is included following each observation. Recommended actions are provided in bold.

Table 17: pH Discussion of Results

Sample ID	Location	рН
50m Range		
105	Bushland - South	5.2
106	Bushland - West	5.3
107	Bushland - North	5.3

Samples 105, 106 & 107 returned pH values of pH of 5.2-5.3.

• These samples are from bushland areas where a lower pH is to be expected

No action is recommended

108	Bullet catcher 1	6.4
110	Bullet catcher 2	6.2
110	Bullet catcher 2	6.3

Samples 108 & 110 have returned pH values outside the target pH range of 6.5-8.5.

- The range floors and bullet catchers are comprised of blue metal gravels which at times return elevated pH values AND below pH 6.5
- The pH within the receiving basin water is 7.9

No action is recommended

116	Sediment Basin 5	6.1

Samples 116returned a pH value of pH of 6.1

• The pH within the receiving basin water is 7.9

No action is recommended

500m Range		
201	Bushland South	5.4
201	Bushland South	5.4
202	Bushland East 1	5.5
203	Bushland West 1	5
204	Bushland West 2	5.1
205	Bushland North	5.2

Samples 105, 106 & 107 returned pH values of pH of 5.2-5.3.

• These samples are from bushland areas where a lower pH is to be expected

Sample ID	Location	
No action is	recommended	
210	Range floor 300-385m	5.9
211 Range floor 0-50m		5.4
212	Range floor 50-100m	6
213	Range floor 100-150m	6
213	Range floor 100-150m	6
214	Range floor 150-200m	6.1
215	Range floor 200-300m	5.6
216	Range floor 300-385m	5.7
217	Range floor 385-500m	5.3
218	Range floor 100-150m	5.4
219	Range floor 200-300m	5.7
221	Intermediate Mound 50m	5.7
226	Intermediate Mound 385m	6.1
232	10m in front of intermediate Mound - 100m	6.1
235	10m in front of intermediate Mound - 10m Mound 300m	
238	238 10m Stop Butt Central	

Sample the above samples returned a pH values bellow the target range of 6.5-8.5

- The soils of the range floor and intermediate mounds have returned low pH within previous sampling events.
- Treatment with lime in this area has been recommended in the previous annual report.

This ongoing treatment will be confirmed with range management.

242	Basin 2 – 500m West	8.7

Sample 242 returned a value slightly above the range of 6.5-8.5

This location returned a value of pH 7.5 in the previous quarter.

No recommendations at this time however this area will be compared in subsequent sampling exercises.

263 Sediment Below Basin 1 6.4	263	Sediment Below Basin 1	6.4
--------------------------------	-----	------------------------	-----

Sample 263 returned a pH value of pH of 6.4

• These sample is from a bushland area where a lower pH is to be expected

No action is recommended.

265	Sediment Basin 4 (Car Park)	5.5
-----	-----------------------------	-----

Sample 265 returned a pH value of pH of 5.5

- These sample is from a bushland area where a lower pH is to be expected
- Further tannin staining within the water commonly is associated with temporary lower pH values which are resolved as the tannins oxidise.
- The water within the basin is pH6.8
- This tannin is assumed to be from the stockpiled mulched material within the car park area.

No action is recommended

Sample ID	Location	рН
242 WATER Basin 2 – 500m West		8.7

Sample 242 returned a value slightly above the pH range of 8.5.

This is inconsistent with values indicted from previous sampling events.

No action is recommended at this time

800m Range		
308	Mantlet Central	6.2
309	Mantlet East	6.4
313	Bench in front of Stop Butt West	6.2

Samples 308, 309 & 313 returned pH values in the range of 6.2-6.4

- These values are inconsistent with values in adjacent areas
- These areas will be reviewed in future monitoring events.

No action is recommended at this time

319	Stormwater Lower	6.3
320	Rear channel Upper	6.2
322	Sediment from 800m pond (Basin 7)	5.5

Samples 319, 320 & 322 returned pH values of pH below the pH range of 6.5-8.5.

• These samples are from bushland areas where a lower pH is to be expected

No action is recommended

323 Sediment accumulating within the swale – Gallery 6.3
--

Sample 323 is accumulated sediment from adjacent areas.

It is accumulated as a thin layer within the concrete swale and is regularly cleared/disposed off and swept as part of range maintenance.

No action is recommended

	331	Water - Pond side of 800	2.4

Sample 331 returned a low pH of 2.4

Its basin does not receive runoff from any shot fall areas

This value is not consistent with other observations for this location. it may be associated with a sampling error or break down or organic materials. The pH is included in all subsequent sampling exercises.

No action recommended.

332	Water - Rear Channel 800 (upper)	10.1

Sample 332 returned pH of 10.1 outside the target range of 6.5-8.5.

This area is managed as not a shot fall area. (see the CSM for the 800m range provided as figure 6).

This value is not consistent with other observations for this location as runoff from the local catchment is assumed to associated with the mulched surfaces adjacent and pH is typically Low.

This result will be reviewed in following sampling events.

No action at this time.

8.4.2 Results/discussion – Additional Sampling Soils, Sediments and Surface Waters all

The following sampling was undertaken based on site observation and opportunities. The full results for these provided with the complete tables as Appendix 1.

Sample 122 - Sediment interface of drainage with Range 1

It was observed that part of range 1 within the 50m range drain to the north and out of the treatment train to basin 5. Mobilised sediment was collected and subjected the full annual monitoring suite.

Sample 324 – Sediment Upper rear channel – 800m

Sample 324 returned values for Lead above the range for all criterial nominated within the SAQMP.

Sample 324 returned values for Copper above EIL from the WCMP - 160mg/kg vs 132 mg/kg but under the HIL (C &D) criteria.

Sample 330 & 332-Water rear channel - 800m

Water was sampled from the rear of the channel as it was available.

Sample 330/332 returned values for

- Lead over all criteria nominated within the SAQP
- Copper over the ANZECC 2000 PFWS/NEPM 2013 GIL but under the ANZECC 2000 RWQG
- Zinc over the ANZECC 2000 PFWS/NEPM 2013 GIL but under the ANZECC 2000 RWQG

The above results indicate that,

- Further sampling to identify the extent of a potential hotspot at the rear of the stop but which does not drain to the sealed "lime" treatment unit.
- Additional controls should be considered to the drainage at the rear of the site.

8.4.3 Visual Inspections: Water Quality Basins

The following table summarises observations and recommended actions from Section 9.2. Recommended actions are provided in bold.

Table 18: Discussion of Observations Water Quality Basins

Item	Location	Observation and Comment
1.	Basin 1	Rock work at the inlet to the basin has been moved by in-flows.
		Geotextile has been exposed
		Additional works may be required in this area to reinstate rock
		works. The rock material used should be well graded hard rock.
2.	Outlet area below	"Erosion" or movement of material below the basin outlet is
	Basin 1	evident.
		This loss is of burnt mulch material with limited progress into underlying soil strata.
		This area to be monitored for natural regeneration following fire.
		The impact does not seem to be progressing.
3.	Basin 2 (500m west)	Inlets and outlet areas are stable.

		No issues evident or required action.
4.	Basin 3 (500m east)	Significant re work has been undertaken at the main (Southern) inlet of the basin with placement of rock.
		Water is passing out the side of the inlet control and is Leading to scour adjacent to the inlet.
		It is likely that re-work of the inlet structure will be required. It is recommended that any re-work include shaping of the inlet channel to create a defined inflow and is lined with geotextile.
		The rock used should consist of well graded angular material.
5.	Basin 4 (car park)	Inlets and outlet areas are stable.
		No issues or required action is evident.
6.	Basin 5 (50m)	Scour is evident over batter at entrance to basin enclosure.
		Water is directed by surface water swale towards entrance track to basin.
		This scour has not progressed
7.	Basin 6	This basin has not been constructed.
8.	Basin 7 (800m range)	Inlets and outlet areas are stable.
		No issues or required action is evident.

8.4.4 Visual Inspections: Lime treatment Process

Visual inspection of the lime treatment process was not possible as this infrastructure is sealed and not readily accessible.

It is recommended that this item be removed from the sampling program for future monitoring events. Servicing or inspection by a qualified technician may be identified as required by future monitoring results.

8.4.5 Visual Inspections: Road Infrastructure and Drainage

The following table summarises observations and recommended actions from Section 9.2. Recommended actions are provided in bold.

Table 19: Discussion of Observations Road Infrastructure

Item	Location	Observation and Comment
1.	50/500m	Some sediment deposition is evident within table drains and at culverts.
		Works in these areas to clear the sediment should be scheduled within normal maintenance program.
2.	800m	No issues or required action is evident.

8.4.6 Visual Inspections: Signage

Directional and safety signage was in place across all areas.

Signage was provided at basin enclosures indicating that the water is not suitable for firefighting purposes.

8.4.7 Visual Inspections: Vegetation health - Range areas

Significant portions of the range areas heavily grazed with localised bare areas.

No significant sediment loss was observed from Range areas or surrounds. The existing surface soil material is generally poor however seems to be resistant to erosion.

The following table summarises observations and recommended actions from Section 9.2. Recommended actions are provided in bold.

Table 20: Discussion of Observations, Vegetation Health

Item	Location	Observation and Comment
1.	Range 1 – 50m range	Localised pooling is occurring in the middle of the range. This pooling is impacting establishment of surface cover. Erosion is not evident over the surface
2.	Various – 500m range	Localised pooling is occurring in several locations within the 500m range. This pooling is impacting establishment of surface cover. Erosion is not evident over the surface

8.4.8 Visual Inspections: Other Engineering Controls and Structures

The following table summarises observations and recommended actions from Section 9.2. Recommended actions are provided in bold.

Table 21: Discussion of Observations, Other Engineering Controls and Structures

Item	Location	Observation and Comment
1.	Stop butt – 500m	Some riling at front of batter occurring where water is pooling on
	range	top of butt formation and overflows over face
		Rework of top of the mound formation will be required to prevent surface water passing over the batters of the stop butt.
2.	Pit at South East	Pit is full of sediment and being bypassed
	corner of 50m stop	
	butt	Modification of this outlet area may be required depending on existing stormwater arrangement
		E.g. additional control to prevent pit becoming blocked or otherwise replace with a stable surface level outlet and spreader.
3.	Drain at rear of 50m	The Drainage swale leading to the SE stormwater pit is bare, with
	stop butt	sediment loss evident
		Further stabilization of the back of the mound will be required to reduce the sediment load to the drainage outlets.
4.	Swale drain leading	The invert of drainage swales are bare, with some scour/sediment
	to south west corner of 500m stop butt	loss evident.
		New rock check dams have been installed. It is noted that the rock
		size too large with no fabric installed causing water to be focused
		through with scour underneath
		It is recommended intermix smaller rock (75mm-150mm) into gaps of existing structures plus some smaller rock (diameter 25mm).

		Works to revegetate the invert of the channels should be considered to reduce generation of sediment.
5.	Western corner at rear of 500m butt	Sediment from drainage swale is accumulating in rock work at the inlet to the stormwater pit.
		Revegetation / stabilisation works are required at the rear of the batter and invert of the swale to reduce sediment generation.
6.	Face of stop butt at 500m	Some riling at front of batter occurring where water is pooling on top of butt formation and overflows over face.
		Rework of top of the mound formation will be required to prevent surface water passing over the batters of the stop butt.

8.5 Recommendations

The following recommendations are made subsequent to the first quarter monitoring event;

8.5.1 Management Actions

The following management actions are presented summarised from section 9.3;

- 1. Investigate works to improve/reinstate inlet controls at Basin 1 and Basin 3.
- 2. Include clearing of sediment from drainage and culverts within the road network to the 50m and 500m ranges as part of regular maintenance.
- 3. Investigate works to re shape top of stop butt mounds at the 50 and 500m ranges
- 4. Investigate works to improve stabilisation/vegetation rear of the stop butt mounds at the 50 and 500m ranges and associated drainage
- 5. Investigate works to improve check measures (as required) at the swale drains at the Eastern side of the 500m range and South Eastern corner of the 500m range.
- 6. Investigate works to maintain / improve drainage outlet at the southern corner at rear of 50m range.
- 7. Additional controls should be considered to the drainage at the rear of the site. This is in response to observations this quarter (see 2.3.2) and also previous observations of low pH.

8.5.2 Follow up Monitoring

The Results returned at the rear of the 800m range stop butt suggest that the further sampling to identify the extent of a potential hotspot at the rear of the stop but which does not drain to the sealed "lime " treatment unit.

This will be proposed to be undertaken associated with the next quarter sampling exercise.

9.4.3 Changes to Sampling Program

No changes to scheduled monitoring/s program is recommended.

9 References

Southern Highlands Regional Shooting Complex, Water Cycle Management Plan (ErSed Sept 2018)

National Environment Protection (Assessment of Site Contamination) Measure (NEPM), National Environment Protection Council (2013).

National Environment Protection (Assessment of Site Contamination) Measure (NEPM), Schedule B1 Guideline on Investigation Levels for Soil and Groundwater, National Environment Protection Council (2011).

Australian and New Zealand Guidelines for Fresh and Marine Water Quality, Australian and New Zealand Environment and Conservation Council (October 2000).

Guidelines for Consultants Reporting on Contaminated Sites, NSW Office of Environment and Heritage (2011).

Contaminated Sites: Guidelines for the NSW Site Auditor Scheme (2nd edition), NSW Department of Environment and Conservation (2006).

Best Management Practices for Lead at Outdoor Shooting Ranges, United States Environmental Protection Agency (2005).

Southern Highlands Regional Shooting Complex Civil Works Plans Drawings C-SC-202-253 (Arcadis Australia Pacific Pty Limited, 2015)

10 Appendices

Appendix 1 – Results

TABLE 22 SOIL AND SEDIMENT RESULTS – ALL RANGES

TABLE 23 SURFACE WATERS (50M, 500M & 800M)

TABLE 22	2: 2022 SOIL & SEDIME	NT RESULTS	S – ALL RA	NGES													
Sample ID	Sample Location	PAH- Total	PAH- B(a) PTEQ	PAH- B(a)P	Arsenic	Cad mium	Chro mium	Copper	Lead	Mercury	Nickel	Zinc	Tin	Anti- mony	Iron	CEC	рН
	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	meq/ 100g	pH Units
EIL from	WCMP			(ESL) 0.7	100	-	414	132	1113	-	34	190	OBS ONLY	1	OBS ONLY		
HIL (C)		300	3	-	300	90	300	17000	600	13	1200	30000		252			
HIL (D)			-	-	3000	900	3600	240000	1500	180	6000	400000					
RANGE (OF VALUES																6.5-8.5
	Quantitation Limit of Reporting (PQL)	0.05			4	0.4	1	1	1	0.1	1	1	1	7	10	1	
50m Ran	ge																
101	Range 1 - Floor	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	7.5
101	Range 1 - Floor	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	7.6
102	Range 2 - Floor	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	7
103	Range 3 - Floor	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	6.8
104	Range 5 - Floor	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	6.7
105	Bushland - South	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	5.2
106	Bushland - West	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	5.3
107	Bushland - North	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	5.3
108	Bullet catcher 1	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	6.4
109	Bullet catcher 4	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	6.5
110	Bullet catcher 2	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	6.2
110	Bullet catcher 2	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	6.3
111	Above b-catcher 2	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	8.4
112	Above b-catcher 4	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	8.4

TABLE 22	2: 2022 SOIL & SEDIME	NT RESULTS	S – ALL RA	NGES													
Sample ID	Sample Location	PAH- Total	PAH- B(a) PTEQ	PAH- B(a)P	Arsenic	Cad mium	Chro mium	Copper	Lead	Mercury	Nickel	Zinc	Tin	Anti- mony	Iron	CEC	рН
	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	meq/ 100g	pH Units
EIL from	WCMP			(ESL) 0.7	100	1	414	132	1113	-	34	190	OBS ONLY	1	OBS ONLY		
HIL (C)		300	3	-	300	90	300	17000	600	13	1200	30000		252			
HIL (D)			-	-	3000	900	3600	240000	1500	180	6000	400000					
RANGE (OF VALUES																6.5-8.5
	Quantitation Limit of Reporting (PQL)	0.05			4	0.4	1	1	1	0.1	1	1	1	7	10	1	
113	10m in-front BC 5	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	7.3
114	10m in-front BC 2	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	7
115	10m in-front BC 3	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	6.8
116	Sediment Basin 5	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	6.1
119	Mound Range 1	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	8
122	R1 Interface	0.52	<0.5	0.06	4	<0.4	15	16	36	<0.1	4	55					7.6
500m Ra	nge (including Basin 1)																
201	Bushland South	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	5.4
201	Bushland South	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	5.4
202	Bushland East 1	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	5.5
203	Bushland West 1	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	5
204	Bushland West 2	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	5.1
205	Bushland North	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	5.2
206	Container Area	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	6.5
210	Range 300-385m	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	5.9

TABLE 22	2: 2022 SOIL & SEDIME	NT RESULTS	S – ALL RA	NGES													
Sample ID	Sample Location	PAH- Total	PAH- B(a) PTEQ	PAH- B(a)P	Arsenic	Cad mium	Chro mium	Copper	Lead	Mercury	Nickel	Zinc	Tin	Anti- mony	Iron	CEC	рН
	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	meq/ 100g	pH Units
EIL from	WCMP			(ESL) 0.7	100	-	414	132	1113	-	34	190	OBS ONLY	1	OBS ONLY		
HIL (C)		300	3	-	300	90	300	17000	600	13	1200	30000		252			
HIL (D)			-	-	3000	900	3600	240000	1500	180	6000	400000					
RANGE (OF VALUES																6.5-8.5
	Quantitation Limit of Reporting (PQL)	0.05			4	0.4	1	1	1	0.1	1	1	1	7	10	1	
211	Range 0-50m	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	5.4
212	Range 50-100m	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	6
213	Range 100-150m	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	6
213	Range 100-150m	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	6
214	Range 150-200m	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	6.1
215	Range 200-300m	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	5.6
216	Range 300-385m	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	5.7
217	Range 385-500m	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	5.3
218	Range 100-150m	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	5.4
219	Range 200-300m	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	5.7
221	Mound 50m	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	5.7
222	Mound 100m	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	7.7
223	Mound 150m	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	8.4
223	Mound 150m	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	8.5
224	Mound 200m	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	8.5

TABLE 22: 2022 SOIL & SEDIMENT RESULTS – ALL RANGES Sample																	
Sample ID	Sample Location	PAH- Total	PAH- B(a) PTEQ	PAH- B(a)P	Arsenic	Cad mium	Chro mium	Copper	Lead	Mercury	Nickel	Zinc	Tin	Anti- mony	Iron	CEC	рН
	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	meq/ 100g	pH Units
EIL from	WCMP			(ESL) 0.7	100	-	414	132	1113	-	34	190	OBS ONLY	-	OBS ONLY		
HIL (C)		300	3	-	300	90	300	17000	600	13	1200	30000		252			
HIL (D)			-	-	3000	900	3600	240000	1500	180	6000	400000					
RANGE (OF VALUES																6.5-8.5
	Quantitation Limit of Reporting (PQL)	0.05			4	0.4	1	1	1	0.1	1	1	1	7	10	1	
225	Mound 300m	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	7.5
226	Mound 385m	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	6.1
227	Stop butt West	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	6.6
228	Stop butt Central	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	7.2
229	Stop butt East	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	6.7
231	10m Mound 50m	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	6.5
232	10m Mound 100m	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	6.1
233	10m Mound 150m	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	7.6
233	10m Mound 150m	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	7.5
234	10m Mound 200m	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	7.3
235	10m Mound 300m	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	6.1
236	10m Mound 385m	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	7.4
237	10m Stop Butt West	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	6.7
238	10m Stop Butt Central	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	6.3
239	10m Stop Butt East	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	7.3

TABLE 22	TABLE 22: 2022 SOIL & SEDIMENT RESULTS – ALL RANGES Sample PAH- PAH- PAH- Cad Chro																
Sample ID	Sample Location	PAH- Total	PAH- B(a) PTEQ	PAH- B(a)P	Arsenic	Cad mium	Chro mium	Copper	Lead	Mercury	Nickel	Zinc	Tin	Anti- mony	Iron	CEC	рН
	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	meq/ 100g	pH Units
EIL from	WCMP			(ESL) 0.7	100	-	414	132	1113	-	34	190	OBS ONLY	-	OBS ONLY	_	
HIL (C)		300	3	-	300	90	300	17000	600	13	1200	30000		252			
HIL (D)			-	-	3000	900	3600	240000	1500	180	6000	400000					
RANGE	OF VALUES																6.5-8.5
	Quantitation Limit of Reporting (PQL)	0.05			4	0.4	1	1	1	0.1	1	1	1	7	10	1	
241	Sediment Basin 2	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	7.4
243	Sediment Basin 3	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	7
245	Below Basin 2	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	6.7
245	Below Basin 2	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	6.7
261	Sediment Basin 1	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	6.6
263	Below Basin 1	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	6.4
265	Sediment Basin 4	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	5.5
800m Ra	nge																
301	Below B-Catcher 1	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	6.5
302	Below B-Catcher 5	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	8.9
303	Butt above BC 1	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	7.2
304	Butt between 2-3	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	6.8
305	Top of Butt 3	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	8
305	Top of Butt 3	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	8.1
306	Top of Butt 4	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	7.6

TABLE 22	TABLE 22: 2022 SOIL & SEDIMENT RESULTS – ALL RANGES Sample PAH-PAH-PAH-PAH-PAH-PAH-PAH-PAH-PAH-PAH-																
Sample ID	Sample Location	PAH- Total	PAH- B(a) PTEQ	PAH- B(a)P	Arsenic	Cad mium	Chro mium	Copper	Lead	Mercury	Nickel	Zinc	Tin	Anti- mony	Iron	CEC	рН
	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	meq/ 100g	pH Units
EIL from	WCMP			(ESL) 0.7	100	-	414	132	1113	-	34	190	OBS ONLY	-	OBS ONLY		
HIL (C)		300	3	-	300	90	300	17000	600	13	1200	30000		252			
HIL (D)			-	-	3000	900	3600	240000	1500	180	6000	400000					
RANGE (OF VALUES																6.5-8.5
	Quantitation Limit of Reporting (PQL)	0.05			4	0.4	1	1	1	0.1	1	1	1	7	10	1	
307	Mantlet West	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	6.7
308	Mantlet Central	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	6.2
309	Mantlet East	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	6.4
310	10m Mantlet W	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	8.2
311	10m Mantlet C	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	7.5
312	10m Mantlet E	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	7.9
313	Bench Butt W	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	6.2
314	Bench Butt C	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	7
315	Bench Butt E	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	7.8
316	Rear of Butt	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	7.3
317	Over Storeroom	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	5.6
318	Culvert Upper	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	6.8
319	Stormwater Lower	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	6.3
320	Rear channel Upper	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	6.2
321	Rear channel Lower	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	7

TABLE 22	2: 2022 SOIL & SEDIME	NT RESULTS	S – ALL RA	NGES													
Sample ID	Sample Location	PAH- Total	PAH- B(a) PTEQ	PAH- B(a)P	Arsenic	Cad mium	Chro mium	Copper	Lead	Mercury	Nickel	Zinc	Tin	Anti- mony	Iron	CEC	рН
	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	meq/ 100g	pH Units
EIL from	WCMP			(ESL) 0.7	100	1	414	132	1113	-	34	190	OBS ONLY	1	OBS ONLY		
HIL (C)		300	3	-	300	90	300	17000	600	13	1200	30000		252			
HIL (D)			-	-	3000	900	3600	240000	1500	180	6000	400000					
RANGE	OF VALUES																6.5-8.5
	Quantitation Limit of Reporting (PQL)	0.05			4	0.4	1	1	1	0.1	1	1	1	7	10	1	
322	Sed 800m Pond	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	5.5
323	Sediment Gallery	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	6.3
323	Sediment Gallery	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	6.3
324	Rear channel Upper	<0.05	<0.5	<0.05	4	<0.4	12	160	1700	<0.1	3	34					6.7
							_							_			

TABLE 23: SURFACE WATERS – 50M, 500M, 800M & SURROUNDS															
Sample ID	LOCATION	рН	Turb- idity	Total N	Ammonia as N	DO	Phosphate as P	Phos- phorus	Nickel	Arsenic	Chromium	Lead	Copper	Zinc	Antimony
				OBS ONLY		OBS ONLY		OBS ONLY							
	ANZECC 2000 PFWS/NEPM 2013 GIL			0.25	0.9		0.015	0.2	11	13	3.3	3.4	1.4	8	9
	ANZECC 2000 RWQG			0.25	10				100	50	50	50	1000	5000	-
Units		pH Units	NTU	mg/L	mg/L	mg/L	mg/L	mg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Practical Quantitation Limit or Limit of Reporting Test (PQL)			0.1	0.005	0.1	0.005	0.05	1	1	1	1	1	1	1	
117	Basin 5 – 50m	7.9	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]
118	Basin 5 – inlet pipe 50m	7.2	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]
242	Basin 2 – 500m West	8.7	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]
244	Basin 3 – 500m East	7	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]
262	Basin 1- 200m	7.6	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]
264	Creek below Basin 1	7.1	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]
266	Basin 4 – Car Park 50/500	6.8	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]
330	Rear Channel 800	6.5	780	0.9	0.53	7.7	<0.005	<0.05	1	4	3	280	39	13	[NT]
331	Pond side of 800	2.4	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]
332	Rear Channel 800 (upper)	10.1	520	1.2	0.36	8.1	<0.005	0.2	3	7	8	680	55	25	[NT]
332	Rear Channel 800 (upper)	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]								[NT]